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The application of machine learning methods to neuroimaging data has fundamentally altered the field of
cognitive neuroscience. Future progress in understanding brain function using these methods will require
addressing a number of key methodological and interpretive challenges. Because these challenges often remain
unseen and metaphorically “haunt” our efforts to use these methods to understand the brain, we refer to them as
“ghosts”. In this paper, we describe three such ghosts, situate them within a more general framework from
philosophy of science, and then describe steps to address them. The first ghost arises from difficulties in deter-
mining what information machine learning classifiers use for decoding. The second ghost arises from the interplay
of experimental design and the structure of information in the brain – that is, our methods embody implicit as-
sumptions about information processing in the brain, and it is often difficult to determine if those assumptions are
satisfied. The third ghost emerges from our limited ability to distinguish information that is merely decodable
from the brain from information that is represented and used by the brain. Each of the three ghosts place limits on
the interpretability of decoding research in cognitive neuroscience. There are no easy solutions, but facing these
issues squarely will provide a clearer path to understanding the nature of representation and computation in the
human brain.
1. Introduction: data, pattern, theory

Textbooks present scientific confirmation as a matter of fitting theory
to data. Savvy philosophers and scientists have long known better. High-
level theories do not make direct predictions about data. To borrow a
framework from philosophy of science, scientific inference is not a one-
step process from data to theory but a two-step process from data to
phenomenon to theory (Bogen and Woodward, 1988; Suppes, 1962). For
example, the Standard Model in physics is not tested directly against the
voluminous data from particle colliders. Instead, that collider data is
processed to give evidence for some stable, replicable phenomenon – Z0

decay, for example – and then the Standard Model is checked to see if it
can account for that phenomenon. Similarly, plate tectonics did not
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explain magnetometer readings but rather the spreading of the mid-Atlantic
ridge. General relativity did not explain a series of telescopic observations
but the precession of Mercury.

So too with various types of data in cognitive neuroscience. What one
typically aims to explain is not raw data itself (e.g., changes in BOLD
signal), or even a particular set of results from a single experiment.
Rather, the goal is arguably to uncover and explain stable and replicable
patterns of activation in response to a stimulus or task. It is of only mild
interest that inferior temporal (IT) cortex was activated in this or that
experiment. It is, however, of great importance that IT cortex is reliably
activated by a wide variety of object recognition tasks.

Many early critiques of neuroimaging focused on these two inferen-
tial steps as they applied to univariate analyses of brain activation.
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Insofar as simple univariate analyses seemed problematic, it was pre-
cisely because of weak links in the inference from data to replicable
phenomenon (Klein, 2010; Logothetis et al., 2001; Nair, 2005; Poldrack,
2006). At the same time as the weaknesses in univariate analyses were
becoming apparent, developments in machine learning techniques were
changing the world of science, technology, medicine, and industry
(Jordan and Mitchell, 2015). Perhaps unsurprisingly, machine learning
methods have also found their way into cognitive neuroscience, most
prominently under the banner of multivariate pattern analysis (MVPA) or
“brain decoding”. Some uses of machine learning in neuroscience
directly address practical problems. For example, machine learning
methods can be used to decipher patterns in neural data for clinical
diagnosis and rehabilitation purposes including brain-machine interfaces
(Hatsopoulos and Donoghue, 2009). Such uses are judged solely by their
utility, and are otherwise unconstrained in the data and methods they
use. We mention these to put them aside. Our focus will be on the
application of decoding methods in the pursuit of basic knowledge about
brain function.

Machine learning methods have become popular in part because they
do not require many of the problematic auxiliary assumptions that plague
univariate analyses. Specifically, MVPA arguably does not require strong
commitments about the viability of reverse inference (Poldrack, 2006).
Nor does MVPA assume a simple relationship between brain activity and
the BOLD response (Logothetis et al., 2001), or the specifics of process
decomposition (Sternberg, 2011). Further, MVPA allows researchers to
deal with extremely large datasets utilising a wide range of techniques
including structural MRI, DTI, fMRI, EEG, and MEG. The combination of
large datasets and comparatively fewer assumptions gives machine
learning methods an air of objectivity: rather than relying on old as-
sumptions about cognitive architecture, wemight simply let the brain tell
us which categories provide the best fit (Anderson, 2014).

Yet machine learning does not directly connect theory and data any
more than univariate analyses. The primary outcome from machine
learning analyses is not (we suggest) a direct test of theory but rather
evidence concerning stable patterns of brain activity – phenomena, in the
above parlance. Such patterns are typically characterised in terms of a
neural population's representational space: that is, how activity in the
population activity relates both to the world and to other neural repre-
sentations. The phenomena thus uncovered are what provide a basis for
our tests of theories about cognition and brain function.

Machine learning brings with it its own set of problems. Precisely
because it offers up simple patterns, it can be easy to read too much into
data – to see phenomena that are not really there. This article outlines
three of these metaphorical “ghosts” in machine learning techniques, as
applied in cognitive neuroscience. The first involves the source of MVPA
data itself, and the need to achieve greater specificity about the infor-
mation we are measuring in the brain. The second involves the move
from data to phenomenon, in particular when using dimensionality
reduction techniques to go from complex datasets to simple patterns. The
third and final challenge comes in moving from phenomenon to theory,
and the difference between measuring information in the brain and
inferring how the brain might actually use this information. Each of the
three ghosts place limits on the interpretability of decoding research in
cognitive neuroscience. Although there are no easy solutions, awareness
of these issues will provide a clearer path to understanding the nature of
representation and computation in the human brain.

Most will be familiar with some of these challenges, and some will be
familiar with all of them. Many researchers have expressed related con-
cerns about the interpretation of MVPA decoding results in cognitive
neuroscience, as well as offering similar recommendations that this issue
must be handled with care (e.g., Davis and Poldrack, 2014; de-Wit et al.,
2016; Dubois et al., 2015; Guest and Love, 2017; Haynes, 2015; Poldrack
and Farah, 2015; Ritchie et al., in press). One of our goals in this paper is
to show that these problems can be fit into a common framework that
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connects them to ones faced previously by other, more well-established
scientific disciplines. This is not an exercise in pessimism, however. We
think that by clarifying the different steps of scientific inference and
identifying the points at which problems often arise, we can arrive at
useful constraints on the design and interpretation of machine learning
studies.

Finally, in highlighting several field-specific challenges facing
decoding research, we do not mean to imply that other interpretive and
inferential issues associated with neuroimaging in general are somehow
irrelevant. Importantly, the inferences licensed by decoding methods –

like all neuroimaging methods – are limited by the fact that they are
inherently correlational (Poldrack, 2011). Consequently, demonstrating
significant decoding in a given brain region during task performance
cannot by itself establish that it plays a causal role in that performance.
Interventions, which include transcranial magnetic stimulation, revers-
ible inactivation, lesions, and optogenetics, provide essential causal in-
formation that complements the evidence supplied by decoding studies
(Pearl, 1995; Spirtes et al., 2000; Woodward, 2003). Related general
critiques of decoding research based on their reliance on reverse infer-
ence (e.g., Poldrack, 2006, 2008) may also be germane, but fall outside
the scope of this article to address. Importantly, we are squarely focused
on internal steps that decoding researchers can take to overcome the
field-specific interpretative and inferential challenges described above –

without depending on help from other methods.

2. The ghost of source ambiguity

In science, data is the foundation uponwhich we discover phenomena
and test theories. The same is true in cognitive neuroscience. But what
exactly is the nature of the data we rely on in decoding research?
Although there is consensus that machine learning methods measure
information in the brain, it is quite common for there to be uncertainty
about the underlying source of this information. The first ghost arises
from the gap between our ability to measure information and our ca-
pacity to determine the underlying neural source. The former enables us
to tell whether, and perhaps even how much, decodable information is
present about the stimulus or task condition in a brain representation. Yet
only the latter – identifying the neural source of this information – per-
mits the data to act as a foundation for interpretation and brings us closer
to the aim of understanding neural representations and processes.

Ascertaining the true neural source of decodable information, how-
ever, is extremely difficult because the mere presence of decodable in-
formation is ambiguous between potential sources (Bartels et al., 2008;
Naselaris and Kay, 2015; Op de Beeck, 2010). To illustrate this, consider
a hypothetical scenario from another branch of science. Suppose a simple
linear classifier such as Gaussian Naïve Bayes (GNB) is successfully
trained to predict whether a hurricane will form based on data from a
large array of meteorological sensors. At this stage, we would have
learned that information about hurricanes is present in the multivariate
data collected from the sensors. Although this result would be useful for
all kinds of practical purposes, we would not have appreciably deepened
our understanding of hurricanes. At a minimum, if the classifier is to help
us understand hurricanes, we would have to determine what information
in the sensor data is driving the classification. To do this, one might
inspect the classifier weights. Perhaps one would then find that a com-
bination of dew point and humidity drove the classification. Only now
would we begin to understand the relationship between these meteoro-
logical variables and hurricanes, and thereby add to our knowledge of
hurricanes. Moreover, having identified these variables as important
factors for hurricanes puts us in the position to study how these factors
interact with other variables (e.g. wind speed, atmospheric pressure,
etc.), potentially deepening our knowledge of hurricanes still further. The
lesson here is that not all data is equal; even useful and predictive data
can fail to give us the sort of information we need for advancing
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understanding.

2.1. Case study: source ambiguity in orientation decoding

The most rigorous investigation of the link between decodable in-
formation and its underlying neural source involves fMRI orientation
decoding in human visual cortex. While the orientation decoding debate
can be viewed as a success in terms of rigor, it also illustrates the chal-
lenges associated with bridging the gap between decodable information
and identifying the underlying neural source.

Early seminal decoding studies demonstrated that the orientation of
visual gratings could be decoded from the primary visual cortex using
BOLD fMRI (Haynes and Rees, 2005; Kamitani and Tong, 2005). We have
known that neurons in early visual cortex explicitly represent orientation
information for five decades (Hubel and Wiesel, 1968). One could thus
view this result as trivial. What launched an enthusiastic decade long
debate was “how” orientation information represented in neurons was
accessed by the classifier – i.e. bridging decodable information to its
neural source. Making this link was non-trivial because the fMRI scan-
ning resolution in these experiments was 3 mm while orientation infor-
mation in human primary visual cortex is represented in ~0.5 mm wide
columns (Yacoub et al., 2008). It was thus unclear how information
represented at the columnar scale could be accessible to the classifier.
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The stimulus was simple, the experiment was straightforward, and there
was a wealth of existing knowledge about how orientation information is
represented: this early result was an ideal opportunity to link decodable
information to its underlying neural source.

However, demonstrating how decodable information about orienta-
tion arises from neural activity measured with fMRI proved to be diffi-
cult. Why? Ideas about the neural source of decodable information
proved difficult to disambiguate (Fig. 1). An initial proposal was that
machine learning classifiers could exploit small biases in the proportion
of the orientation tuned neurons within individual voxels. This proposal
led to the idea that decoding methods confer “hyperacuity” to fMRI
(Boynton, 2005; Kamitani and Tong, 2005). Later, the “biased map” ac-
count argued that unequal distributions of orientation-tuned neurons
across the cortical map (Furmanski and Engel, 2000; Sasaki et al., 2006)
create coarse scale biases; and that these biases are sufficient to account
for orientation decoding (Freeman et al., 2011, 2013). Most recently, a
model that assumed neither fine scale nor coarse scale biases was used to
show the edges of grating patterns could generate distortions in the map
of cortical activity, providing another potential source of information for
orientation decoding (Carlson, 2014).

Ultimately, some combination of these factors (and perhaps others yet
to be discovered), rather than a single factor, accounts for how decodable
information about orientation arises from neural activity in visual cortex
Fig. 1. Orientation decoding source models. A: Four groups
of hypothetical orientation-tuned neurons with colours indi-
cating the preferred orientation. B: Three models about the
source of information for orientation decoding each make
different assumptions. The pie charts represent fMRI voxels at
different locations in the cortical map in visual cortex, where
the coloured wedges indicate the proportion of each of the
four groups of orientation-tuned neurons in each voxel. The
Hyperacuity model assumes that random sampling results in
small biases in the proportion of neurons in each voxel. Note
the variation in the size of the wedges at different spatial
locations. The Biased map model assumes that the distribu-
tion of neuron varies systematically across the cortical map.
This graphic shows an example of a radial bias, in which there
is a larger proportion of neurons pointing towards the fovea.
Note the upper visual field (UVF) and lower visual field (LVF)
have a greater proportion of vertically tuned neurons; and the
left visual field (Left VF) and right visual field (Right VF) have
a greater proportion of horizontally tuned neurons. The un-
biased model assumes there are no differences in the pro-
portion of neurons across voxels. C: The predicted responses
of the model voxels in B superimposed over four example
grating stimuli. The fill colour of each circle indicates the
predicted strength of response for that model voxel. The
Hyperacuity model predicts variations in each voxel's
response that is determined by the random sampling process.
Decodable information is assumed to arise from these small
biases. The biased map model predicts systematic variations
in each voxel's response at each location in the retinotopic
map. For the radial bias, the largest response comes from map
locations that align with the stimulus orientation. Decodable
information is assumed to arise from these map level biases.
The unbiased model predicts no variation in the response
across voxels, except for voxels at or near the edge of the
stimulus (outer ring), where an edge artefact creates a
disproportionately large response that mimics the radial bias.
This model predicts that the source of decodable information
comes from retinotopic map locations corresponding to the
edge of the stimulus.
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measured with fMRI. Importantly, this debate powerfully demonstrates
how identifying the neural source of decodable information can be
challenging, even if measuring information in the brain using machine
learning methods can be accomplished with relative ease.

2.2. The source of decodable information as a foundation for mechanistic
understanding

One might ask, what is really at stake in this debate? Perhaps this is
just what vigorous, cutting-edge science looks like. We and others think
something more is going on – parties to this debate are grappling with a
foundational problem for the field. When decodable information does not
have an identified neural source, the scientific conclusions of decoding
studies lack a foundation for interpreting subsequent findings. In the
orientation decoding debate described above we outlined three candi-
date sources of decodable information: fine scale biases providing access
to orientation information represented in cortical columns, course scale
biases accessing differences in the distribution of orientation tuned
neurons at the map level, and an edge related stimulus artefact. Decoding
studies have also shown that attention enhances the representation of
orientation information in visual cortex (Jehee et al., 2011; Kamitani and
Tong, 2005) – more specifically attention increases the “decodability” of
grating patterns. The ambiguity in the original debate creates a new
ambiguity: which candidate source model is attention operating over?
We know that stimulus decodability has increased with attention, but
how? Is attention enhancing the representation of orientation informa-
tion in cortical columns? Or is it increasing coarse scale biases at the map
level? Or is attention changing biases at the edge representation? Each
source provides a different mechanistic explanation of attention's
enhancement of the stimulus representation—and ultimately, what we
have learned from the finding that attention enhances “decodability”.

In the above scenario, we can leverage knowledge from neurophysi-
ology showing that attention influences activity in orientation tuned
neurons (Desimone and Duncan, 1995; Kastner and Ungerleider, 2000),
thus providing support for the interpretation that attention is operating
on orientation information represented in cortical columns. Moreover, in
the context of current knowledge, the latter two explanations (attentional
enhancement of coarse scale biases and edge representations) can be seen
as lacking clear evidential support. Many decoding studies, however, are
conducted in research areas where the source of decodable information is
either unspecified or unknown (e.g., object recognition, memory and
language), and we lack the benefit of foundational knowledge like that
we have for early visual cortex. For research in these areas, one needs to
be especially vigilant about the distinction between decodable informa-
tion and the neural source of information driving the classification, as it is
the (often unidentified) source that is relevant for constructing mecha-
nistic explanations of brain processes.

2.3. Why is uncovering the neural source so difficult?

As exemplified above, data about decodability are relatively weak on
their own. When combined with information about the neural source,
however, decodability results can be used as a basis for mechanistic
understanding. How then do we get from decodability to a neural source?
An efficient way of doing this is to inspect the classifier weights.2 In the
toy hurricane example, this approach would point us back to the sensors
driving the classification. From there, details about the sensor type (e.g.,
whether they were dew point or humidity sensors) would inform us
about the source of decodable information. In cognitive neuroscience,
our multivariate data (e.g. fMRI voxels) do not come with tidy labels
indicating their information-bearing function. Using a voxel's location in
the brain, we might be able to infer something broadly about the type of
2 See Haufe et al. (2014) for discussion of practical limitations of this
approach for neuroscience applications.
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information an fMRI voxel is measuring (e.g., an fMRI voxel in visual
cortex is likely measuring activity related to encoding a visual stimulus),
but this is rarely sufficient to identify the source of decodable
information.

An alternative means of tracing decodable information back to its
source in cognitive neuroscience is to leverage theory to generate testable
predictions about the spatial distribution of decodable information across
recording sites (c.f. Carlson et al., 2003; Haxby et al., 2001). Orientation
decoding again provides an illustrative example. Indeed, it is a best-case
scenario since not just one but two of the theoretical accounts of the
neural source make predictions about the spatial distribution of infor-
mation (Fig. 1), thus enabling these accounts to be tested explicitly
(Carlson, 2014; Freeman et al., 2011, 2013; Wardle et al., 2017). The
biased map account precisely predicts that the magnitude of the response
across locations in the cortical map will covary with the orientation of the
stimulus; and the edge account further predicts this activity will be
localised to the edge of the stimulus. The hyperacuity account, in
contrast, is based on the assumption that cortical columns in fMRI voxels
will be irregularly sampled, resulting in a random spatial distribution of
classifier weights across the cortical map. This prediction was qualita-
tively tested in the initial report of orientation decoding, and the weights
indeed appeared random (Kamitani and Tong, 2005). Subsequent
research, however, showed that coarse scale biases do contribute to the
decodability of the stimulus orientation (Freeman et al., 2011, 2013),
calling into question whether the “randomness” test can in fact be
interpreted as positive evidence. Furthermore, accounts lacking spatial
predictions exhibit a degree of freedom that allows them be super-
imposed on top of a broad range of empirical results. This makes such
accounts difficult to disprove. For example, if the spatial distribution of
information were found to align with the biased map account's pre-
dictions (Freeman et al., 2011, 2013), one could still argue that fine scale
sampling biases provide an additional source of decodable information
that goes unseen in the “noise” in the classifier weights.

Note that even though the lack of a spatial prediction is a shortcoming
of the hyperacuity account, this does not invalidate the account. In fact,
encoding model-based analyses such as voxel-wise modelling and partial
receptive field mapping can be viewed as successful extensions of the
idea that fMRI voxels contain biases in their proportions of neurons tuned
to different orientations (Dumoulin andWandell, 2008; Kay et al., 2008).
Nevertheless, most hypotheses aiming to relate decodable information to
a neural source will be “shapeless” in the sense that they do not predict
how information will be distributed spatially across recording sites. As
such, the approach of using the spatial distribution of decodable infor-
mation can only be used to adjudicate candidate sources in (relatively
rare) cases where the alternative accounts predict spatially organised
patterns of information across voxels.

2.4. Identifying a source versus assessing the contribution of multiple
sources

Decoding methods leverage any and all information to make accurate
classifications. It is therefore a plausible scenario that multiple candidate
sources might simultaneously be contributing to the decodability of a
given stimulus or condition. Under this scenario, a distinction needs to be
drawn between whether or not some source of information contributes to
decoding and if so, what the source's contribution is in the context of
multiple other sources. This distinction is essential, as it affects the
strength of the mechanistic explanations of brain processes that we aim
to draw from the data. We again use orientation decoding as an example,
except this time focusing on orientation decoding based on magnetoen-
cephalography (MEG).

If the aim is determining whether a particular source of information
contributes to successful decoding, one widely accepted approach in-
volves using control experiments and/or control analyses to rule out
other sources. One recent study employed this approach to test whether
orientation information represented in cortical columns could be
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resolved with MEG (Cichy et al., 2015). The authors employed multiple
controls to carefully rule out alternative sources including stimulus edges
and global biases, and even provided a model demonstrating how
orientation columns could be resolved with MEG using MVPA. This study
makes a compelling case that orientation tuning in cortical columns is
one source of information for orientation decoding in MEG (Cichy et al.,
2015; Stokes et al., 2015).

The controls approach is an effective one for determining whether a
source is contributing to decoding. However, if the aim is to leverage a
source as a foundation for mechanistic interpretation and understanding
(see section 2.2), it is necessary to examine the relative contribution of
different sources. One approach to this involves examining multiple
source models in a competitive context. Following a protocol used pre-
viously by Alink et al. (2013) to study hyperacuity in fMRI, Wardle et al.
(2016) performed such a study using the representational similarity
analysis (RSA) framework (Kriegeskorte et al., 2008a) with MEG. The
study tested a wide range of stimuli, including several designed to
elucidate the source of decodable information for orientation decoding in
MEG. This study also found that grating orientation could be decoded
with appropriate controls in place, supporting the previous study's find-
ings (Cichy et al., 2015). The competitive model testing, however, pro-
vides a more complete picture of the contribution of different sources.
Wardle et al. (2016) showed that multiple models accounted for the
decodability of the stimuli indicating that multiple sources were
contributing. Furthermore, the orientation model was among the weak-
est, and even a richer model of primary visual cortex (the first layer of
HMAX; Riesenhuber and Poggio, 1999; Serre et al., 2007) provided only
a modest account. If orientation information represented in cortical
columns were a key source of information for orientation decoding in
MEG, we would have expected these models to perform better. Thus,
while this study confirmed orientation information represented in
cortical columns is one source, it is not a major source of decodable
information.

These early studies in orientation decoding in MEG highlight the need
to assess the relative contribution of different sources, when multiple
candidate sources have been identified. This is especially important
when trying to use decodability results as a foundation for mechanistic
understanding. How might the result that attention increases grating
stimulus decodability in the context of MEG be viewed differently? Given
that orientation information represented in cortical columns has been
found to be small source relative to others, would we still be confident
that we are measuring attentional enhancement of orientation informa-
tion represented in cortical columns?

2.5. Moving beyond the first ghost

This section has focused on a specific instance of a more general
problem: when it comes to the hunt for stable phenomena, not all data
are created equal. Decodability is first and foremost a metric of classifier
performance. Using decoding results as data is unproblematic for applied
uses of machine learning. But for studies aiming to tell us something
about the brain, the decodability metric leaves the source of decodable
information either unspecified or ambiguous. This makes it difficult to
move beyond claims about data to claims about stable, repeatable neural
phenomena. And the latter is what cognitive neuroscientists ultimately
require when they seek to test theories.

We emphasise that this is not an insurmountable problem. Rather, our
goal has been to suggest that it can take serious and sustained investi-
gation to resolve questions about neural sources. Minimally, those using
these methods to understand the brain should continue to internally
query “what is the source driving decodability?”, in order to move closer
to the goal of providing mechanistic explanations.

3. The ghost of perceived neutrality

In the previous section, we discussed challenges associated with data.
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The next potential point of friction is the move from data to a stable,
replicable phenomenon. Recall again that theories are primarily tested
against phenomena, rather than individual bits of data gathered by ex-
perimenters. Sometimes the move from data to phenomenon is relatively
straightforward: a regression analysis shows a clear linear trend, or a t-
test shows an obvious difference between two groups. But many inter-
esting phenomena are more complex – and brain phenomena are almost
certainly to be in this category – and the move from data to phenomenon
is consequently more fraught.

A natural way of thinking about brain representations – and one
consonant with the presumed population coding used by the brain – is to
model each brain region's activity as a high-dimensional state space. The
information represented by a region can be represented as points or re-
gions within this space (DiCarlo and Cox, 2007). Exemplar-based
decoding approaches characterise these representational spaces by
modelling the evoked activity of individual stimulus exemplars as points
in the representational space (Kriegeskorte and Kievit, 2013; Krie-
geskorte et al., 2008a). The geometric configuration of exemplars within
the space can then inform us about the functional significance of the
representation. For example, if animate and inanimate object exemplars
form separable clusters in the space, the representation could be used by
the brain to discriminate these two categories of objects (Kiani et al.,
2007; Kriegeskorte et al., 2008b). This state space representation
framework exemplifies the transition from data to phenomenon. The
representational space is the phenomenon that we aim to understand and
test against our theories. For example, is animacy coding a basic orga-
nizational principle of inferior temporal cortex? To (re)construct a
representational space, we use data. The representational similarity
analysis (RSA) framework (Kriegeskorte and Kievit, 2013; Kriegeskorte
et al., 2008a), for example, uses the pairwise distance between the
evoked response to different exemplars (i.e., the “data”) as a proxy for
distance between exemplars representation the brain's representational
space (i.e., the phenomenon). Importantly, this movement from data to
phenomenon embodies assumptions that could potentially warp the
space away from its true nature. In this example, the choice of a distance
metric that is applied to the data (correlation distance, decodability, etc.)
will invariably affect the reconstruction.

There are also interpretive challenges. The high-dimensional nature
of state spaces used to model brain representations are often beyond the
human visual system's capacity for interpretation (typically limited to 3
or 4 dimensions), so it is difficult to grasp their intrinsic structure. One
can leverage model testing to investigate their structure, e.g., using
representational similarity analysis (Kriegeskorte and Kievit, 2013;
Kriegeskorte et al., 2008a); however, in mainstream applications this
yields only a correlation metric that summarizes the relationship be-
tween two (very) complex spaces.

Another approach to understanding these representational spaces is
to use data-driven methods such as multidimensional scaling (MDS) to
reduce the dimensionality of the spaces, and thereby aid human inter-
pretation and comprehension. These techniques are most often used for
visualising large datasets, frequently in conjunction with model testing.
In such uses, they provide a valuable source of intuition about the un-
derlying structure. However, some make a further inference: that the
extracted dimensions reveal intrinsic dimensions of the neural popula-
tion response itself. For example, Kriegeskorte et al. (2008b) used fMRI in
human inferior temporal cortex (IT) and serial single-electrode re-
cordings in monkey IT to study responses to real world objects. Using
MDS and hierarchical clustering they found that responses to objects of
the same animacy category were grouped together, in both human and
monkey IT. They conclude that animacy is a relevant stimulus feature for
area IT, and argue that MDS “can reveal the properties that dominate the
representation of our stimuli in the population code without any prior
hypotheses”. Kiani et al. (2007), looking at the same monkey IT re-
cordings later used by Kriegeskorte, report a similar structure in monkey
IT when using a stimulus set of >1000 objects. This has led to the view
that animacy is an important feature dimension in IT. Similar approaches
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have been used to argue that representations of objects in monkey IT
have around 100 dimensions (Lehky et al., 2014). Dimensionality
reduction has also been used as a tool to investigate a diversity of other
brain functions including working memory (Machens et al., 2010),
speech production (Bouchard et al., 2013) and semantic knowledge
(Huth et al., 2016; Zinszer et al., 2016).

These data-driven approaches have been lauded as potential solutions
to the problem of “conceptual baggage… biasing the space of hypotheses
that we consider”when we try to characterise neural responses in higher-
order visual cortical areas, and further that these methods help to
“circumvent these biases by searching for structure in the functional re-
sponses … in a hypothesis-neutral fashion” (Kanwisher, 2010). This is a
noble goal, but the practice is far from perfect. In particular, even
apparently unsupervised data-driven analyses require substantial exper-
imenter input in the step from data to phenomenon. This reflects a deeper
problem: even the move from data to phenomenon cannot be entirely
hypothesis-free (Hanson, 1958). In the following sections, we further
illustrate the assumptions and interpretative issues made in moving from
data to phenomenon when using data-driven analyses to understand
these representational spaces.

3.1. Data-driven analyses: hypothesis-neutral?

Completely understanding the function of a brain region requires an
understanding of how it represents information. As noted previously, one
way to conceptualize brain representations is as a high-dimensional state
space with individual stimulus exemplars occupying distinct points in the
space. Constructing these spaces and interpreting them is far from being
hypothesis-neutral. As noted previously, one example of this is choosing
a proxy for distance in the transition from data to phenomenon. How-
ever, even before we start to analyse data, choices have already been
made that will affect the outcome. The act of stimulus selection in-
troduces implicit assumptions both about the stimuli and the underlying
representational space. As we cannot measure neural responses to every
possible stimulus, we must determine what seem like the most relevant
dimensions along which our stimuli will vary. This is a vital yet highly
nontrivial task, as the dimensions which seem important to us may not be
the ones which are important to the brain. This is particularly relevant for
those studying brain responses to complex naturalistic stimuli, where the
most appropriate stimulus dimensions can be especially unclear.

Identifying meaningful structure in the results of data-driven analyses
is also non-trivial, and is susceptible to the researcher's preconceptions of
“sensible” structure. Pareidolia is the tendency to see shapes and patterns
where there are none. For example, we readily see shapes in clouds, Jesus
on burnt toast, or even the Virgin Mary in an MRI scan (Hannan, 2016;
Voss et al., 2012). There is no reason to think that scientists are immune
to this sort of error: witness the ironic history of the Rorschach test, in
which many clinicians were willing to see elaborate diagnostic patterns
in patient responses to inkblots (Wood et al., 2003). Pareidolia is argu-
ably only a risk when one fails to appreciate it as a real possibility. Most
of the time, good scientists do. Yet, visualisations of data-driven analyses
can invite misinterpretation precisely because they can make it seem like
no interpretation is necessary. Further, these visualisations are often
taken to be intuitive evidence in their own right, which means they be
given a false impression of the empirical power of the work itself
(Weisberg et al., 2008).

3.2. The (failed) application of data-driven exploratory analyses in a well
understood system

We next illustrate some these conceptual points using an example of
multi-electrode recordings from marmoset area middle-temporal area
(MT). This full details of this illustrative analysis are covered in another
paper in this issue (Goddard et al., 2018). Area MT has been extensively
studied, and contains a high proportion of cells that are selective for
motion direction and speed (Albright, 1984; Britten et al., 1996;
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Maunsell and Van Essen, 1983; Newsome et al., 1989; Salzman et al.,
1990). Moreover, direction and speed are dimensions of visual motion
that correspond to perfectly objective physical magnitudes and are
behaviourally relevant to these organisms. For these reasons, area MT is
generally accepted as playing a key role in visual motion perception. We
reasoned that if data-driven techniques are able to extract complex di-
mensions like “animacy” from higher visual areas, then extraction of
these simple stimulus dimensions from MT ought to be straightforward.

The truth, however, is more complex. We analysed multi-unit activity
from area MT in anaesthetised marmoset monkeys, while moving dot
patterns were presented which systematically varied in speed and di-
rection. We used a linear classifier (LDA) to discriminate between all
pairwise stimulus combinations within each dataset. Even with very
short time bins, classification performance was high, averaging up to
93% for some stimulus pairs. As expected, classifier accuracy decreased
when the stimuli were more similar in direction and/or speed. This
pattern of results is consistent with the existing literature on area MT,
namely that it encodes both motion speed and direction.

To test the utility of dimensionality reduction approaches for
“discovering” important feature dimensions in the neural code we
applied these methods to the complete pattern of classifier performance.
If the dimension reduction approaches are extracting the most mean-
ingful dimensions for understanding the population response, most of the
variability in the data should be captured by just 2 dimensions – a di-
rection dimension that orders stimuli by direction but not speed and a
speed dimension that orders stimuli by speed but groups stimuli of the
same direction.

Fig. 2 shows the dimensions extracted by MDS. There is no single
dimension that clearly maps onto direction or speed. While there
certainly is structure and ordering of the responses by stimulus feature, it
is not obvious that one could discover that direction and speed were
important feature dimensions if this were not already known.

Imagine a researcher naive to the original stimuli dimensions
attempting to decipher – on the basis of Fig. 2 alone – what MT is doing.
The plots do not lack structure; a careless researcher could hypothesise
endlessly about the Rorschach-like patterns and what they mean. As a
related example, consider area “OIC R3” in Huth et al.’s (2016) semantic
map of the brain, which collects together responses to words about
philosophy, science, religion, and spirituality. This either reveals a deep
truth or a failure of the method. Without further investigation, one's
position would represent only preconceived ideas. Conversely, the plots
in Fig. 2 do not lack mystery: a careful researcher could dismiss them as
noise. The dismissive researcher would be wrong, and the ambitious
researcher would be unlikely – based on such plots alone – to discover an
accurate picture of MT's representational space.

At this point, the proponent of data-driven methods faces an un-
comfortable dilemma. On the one hand, it could be that direction and
speed really are underlying dimensions of neural activity in MT, and that
dimensionality-reduction techniques simply cannot extract them (or,
more cautiously, the techniques we used cannot necessarily do so). But
we have used standard techniques in pedestrian ways: if they fail in this
relatively easy case, we ought to be more suspicious of their use in
complicated ones.

On the other hand, it could be that the underlying representational
space of MT is in fact different than the tested stimulus space. This is not
an unreasonable assumption: there is no a priori reason whyMT could not
represent distance and speed by extracting some functions of both. If so,
our methods would in fact be accurately extracting the underlying
representational structure. Yet in any particular case, this is a difficult
line to tread. First, the results strongly depend on which dimensionality
reduction approach one uses and which dimensions one plots (Goddard
et al., 2018).

Second, the choice of dimensionality reduction approach (PCA, MDS,
etc.) makes assumptions about the structure of information in the rep-
resentation. Hierarchical clustering algorithms, for example, assume that
there is meaningful clustering in the data, and can return a hierarchical



Fig. 2. Summary of dimension reduction by multi-dimensional scaling (MDS) of the classifier performance discriminating multi-unit responses to moving dot fields
(84 unique stimuli, of 12 directions and 7 speeds): Data for the 84 unique stimuli projected into spaces defined either by a single dimension or a pair of dimensions
from the MDS solution with 4 dimensions. Each moving dot field stimulus is defined by an arrow, where the direction and speed of the stimulus are given by the
direction and colour of the arrow respectively (blue ¼ slowest speed, red ¼ fastest speed).
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solution even if the target data does not actually form a meaningful hi-
erarchy. Speed and direction of motion are plausibly continuous di-
mensions: hierarchical clustering on these would merely lead one astray.
Or, similarly, k-means clustering requires the experimenter to choose the
number of clusters, and will dutifully return the requested number even
from a completely homogenous set of noise. Again, failure to realise this
could easily lead an experimenter to think they had discovered structure
where there was none. On a related note, dimensionality reduction
mechanisms often embody basic assumptions (such as linearity of
response), which are hard to justify if we think that the stimulus and the
way the stimulus is represented might differ in important ways.

Third and finally, these methods require that the experimenter can
distinguish real but unexpected dimensions from mere noise or failure of
the method. Absent some further story, this means that the researcher
must do serious interpretive work on the extracted dimensions. But
avoiding the need for such interpretation is lauded as a strength of
moving to data-driven methods.

To put the last point a slightly different way, motion and direction
were picked as stimulus dimensions in part because they are salient di-
mensions to us as perceivers. MT clearly supports that salience, but there
is no reason why MT must support this by having dimensions which
correspond to the perceptually salient ones. A basic principle of
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psychological research is that one must sample stimulus space appro-
priately. That is, the stimuli one chooses must be either a systematic or a
fully random sample of the full stimulus space (see Judd et al., 2012 for a
recent review). But if we do not know the underlying representational
dimensions of MT, then we should not have confidence that our intuitive
division of stimuli was an unbiased sample of possible stimuli. And if it
were a biased sample, dimensionality reduction may tell us more about
our own biases in choosing stimuli than it does about the brain itself.

3.3. Dimensionality reduction and exploratory analyses

Where does this leave data-driven approaches as a means of helping
us to understand representational spaces? We reiterate that our primary
target has been the use of such methods to do pure data-driven extraction
of underlying representational dimensions of a brain region. We have
been suspicious of such uses, because it is unlikely that experimenters
adequately sample the available representational space of the underlying
brain region, and because the extracted dimensions are not guaranteed to
be intelligible.

That said, two other uses of dimensionality reduction may be more
defensible (and these are often confused with data-driven extraction).
These uses are considered in greater detail in Goddard et al., 2018. On
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the one hand, dimensionality reduction may be a useful visual aid to
exploratory analysis. Exploratory analysis seeks to find hypotheses that
are worth spending time and resources on exploring. As a
hypothesis-generating procedure, exploratory analysis does not neces-
sarily raise the likelihood that the resulting hypotheses will be true or
even good, but it may be a valuable first step in understanding an
otherwise complex system like the brain.

On the other hand, dimensionality reduction can be used in a limited
way to test hypotheses, and hypothesis-driven approaches may be more
defensible, so long as they are carefully constrained. By the logic we have
just sketched, the results reported by Kriegeskorte et al. (2008) do not
provide strong evidence that animacy is an intrinsic dimension of IT
representational space. On the other hand, if what you wanted to know is
where in the brain has a representational space (with unknown di-
mensions) with enough information to distinguish animate from inani-
mate objects, then the same results suggest that IT is a prime candidate.
More generally, dimensionality reduction might be useful for generating
models that are then tested with new data (Brodersen et al., 2011),
although one still has the problem of moving from extracted dimensions
to models. The key feature to realise is that an areamay carry information
about a perceptually or conceptually salient dimension of variation
without treating it as a neural dimension of variation. To get to the latter,
we will probably have to look elsewhere.

3.4. Moving beyond the second ghost

The move to phenomena is challenging as it has embedded assump-
tions. We think that most researchers are well aware of the dangers of
finding patterns where there are none. Many statistical methods are
invoked precisely to guard against this. When specific interpretive dan-
gers are made salient, good researchers recognize and avoid them. Yet
pareidolia threatens most dangerously when it is subtle – when as-
sumptions are baked into methods which present themselves as
assumption-free. Many researchers have an intimate understanding of
the tools they used, and so this was arguably less of a worry. Yet as many
decoding methods are being built into standard toolboxes, new users can
inadvertently load a host of assumptions at the click of a button. All the
more reason to remain vigilant at the step from data to phenomenon.

4. The ghost of underconstrained representational interpretation

Phenomena like stable feature spaces are interesting because they
bear on theories about how cognitive systems represent the world.
Neural decoding, and related methods, have been promoted as a means
of investigating both the content (Haynes, 2015; Haynes and Rees, 2006;
Norman et al., 2006; O'Toole et al., 2007) and structure (Haxby et al.,
2014; Kriegeskorte and Kievit, 2013) of neural representations. An
equally important and related question concerns precisely what infor-
mation is actually represented and used by the brain for downstream
processing and ultimately to guide behaviour, and whether this can be
recovered reliably using these methods. This is a move from a stable
phenomenon – a feature space – to a theory about how the brain actually
works (for more detail on the distinction, see Goddard et al., 2018). As
with the previous two steps, the transition from phenomenon to theory
can look easier than it actually is.

Does the presence of decodable information in a given brain region
provide compelling evidence that this information is represented and
used by the brain? We think the question is rarely asked, at least in this
fashion. Most decoding papers focus on the hard work of data collection
and inference to phenomenon. Questions about neural representations –
about where and why and how information is actually used in the brain –

require a final inferential step from phenomenon to theory. Conclusions
here, if and when they are drawn at all, are often more tentative.
Increasingly, researchers are coming to appreciate that this inference is
insufficiently constrained and can lead to erroneous claims about the
information that is represented and used at the neural level (e.g., Haynes,
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2015). We explore this as a way of showing the problems that can affect
inference from a reliable phenomenon to a further theoretical claim.

4.1. Neural read-out as a constraint on interpretation

At first glance, this sounds like a highly specific interpretive issue that
pertains to neuroimaging research in which MVPA decoding tools are
employed. Yet, if one scratches just below the surface, it becomes clear
that the problem of interpreting MVPA decoding results is neither
particularly new nor special. Instead, it relates to a more general – and
more basic – problem that neuroscientists must contend with whenever
interpreting neural data in representational or information-processing
terms (Eliasmith and Anderson, 2002; Piccinini and Shagrir, 2014). For
example, this same issue crops up in earlier debates in neurophysiology
about the nature of the neural code (Rieke, 1997). Although the focal
issue there was whether the brain might also represent information using
temporal codes rather than simply a rate code (deCharms and Zador,
2000), the deeper methodological issue concerns how to justify and
effectively constrain our representational gloss on neural systems.

In this earlier context, Rieke (1997) challenged the deep-seated
conviction in neurophysiology that the trial-averaged spiking activity
of individual neurons – the firing rate – is the vehicle for “what the
neuron represents”. They argue this assumption is misguided because,
strictly speaking, neurons never receive an average firing rate as input or
transmit it downstream as output. Instead of assuming that information is
carried by firing rates, they argue that the field should focus on deci-
phering how information is carried by individual spike trains (which can
and do serve as input and output signals between cells). From this
perspective, average firing rates take on a secondary or derivative
importance because they are merely summaries of aggregates of indi-
vidual spike trains. As such, they might be entirely inconsequential to
how neurons carry and transmit information, in the same way that an
average of a thousand telephone calls would tell you very little about
speech and communication.

Critically, Rieke (1997) describe this shift in perspective as “taking
the organism's point of view” because it involves restricting interpreta-
tion to signals that are functionally available to, and therefore exploitable
by, the system itself. If a given neural response is interpreted as carrying a
certain piece of information, such as the orientation of a visual stimulus,
then this information must either be used or potentially available for use
by “downstream” neurons to justify the claim that the neural signal
“represents” stimulus orientation. The lesson for cognitive neuroscience
is that the information represented and used by the system itself – the
brain's intrinsic decoding procedure – may differ from the information
that is extractable in principle, for example, by an arbitrary decoding
method.

The connection between representation and downstream use has not
gone unnoticed by cognitive scientists (e.g., Kirsh, 1990; Marr, 1982).
For example, some attempts along these lines have been made to define
the precise conditions under which information is represented in
computational systems (Kirsh, 1990, 2003). As a simple illustration,
consider a situation in which files or data are no longer accessible in a
computer because of a bad read/write head in the hard drive that pre-
vents it from initialising. In principle, this information is still encoded or
stored on the drive in the sense that there are methods by which this
information may be recovered. Yet, in an important practical sense, the
stored information remains inaccessible to the system itself. Without a
functioning hard drive, no internal computations can be performed on
these data, even if there are external methods by which this information
can be recovered. If the information cannot be used, then what justifi-
cation is there for saying the information is internally represented in the
computer?

This distinction between information that is usable by the system it-
self versus information that is merely recoverable by some arbitrary
method is precisely the distinction that is needed to clarify why decoding
can sometimes generate problems for inferences about neural
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representation. The worry is that our decoding methods – like external
data recovery methods – may reveal information that is simply unavai-
lable for uptake by the brain.

“Downstream use” suggests itself as a promising constraint on rep-
resentation in neural systems (Eliasmith and Anderson, 2002). Under this
scheme, to claim that decodable information is represented in a given
brain area, it must be used or usable by downstream computational
processes in the brain (neural read-out) or reflected in the generation of
output behaviour (behavioural read-out) (Fig. 3). If the brain cannot
extract and carry out transformations on this information, or otherwise
put it to use, there seems little reason to claim it is neurally “represented”.

Despite useful insights about the connection between downstream
use and representation from other fields, there is currently no consensus
on how to incorporate these ideas into cognitive neuroscience when
interpreting the presence of information in the brain revealed through
decoding.
4.2. The biological plausibility of MVPA and neural read-out

When applying these concerns to cognitive neuroscience, and
particularly the information measured with MVPA, the details differ but
availability for use by the brain remains an important constraint.

A working assumption in cognitive neuroscience is that the brain
utilises population codes: neural representations are thought to be
encoded by patterns of activity distributed over populations of neurons
varying from a small number of neurons to in principle the entire brain
(Pouget et al., 2000). Under the assumption that the brain's own
decoding procedures rely on a linear combination of responses from the
different units in the neural population and that neuroimaging tech-
niques coarsely detect these distributed encoding patterns, then linear
classifiers have been considered a reasonable proxy for the decoding
Fig. 3. Downstream use as a constraint on neural representation. Decodable informat
(B and/or C). Or decodable information is represented in a brain area (B), if it is direc
in a brain area (C), which is neither used by downstream areas nor reflected in beh
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procedures utilised by the brain (DiCarlo and Cox, 2007; Kamitani and
Tong, 2005; Misaki et al., 2010; Pouget et al., 2000; Yamins and DiCarlo,
2016). Thus, the biological plausibility of linear classifiers allows them to
serve as a stand-in for the “read-out” processes occurring in the brain
(de-Wit et al., 2016).

The biological plausibility of linear classifiers is often held to justify
not only conclusions about what information is present in a given brain
region, but also to suggest that this information is represented in a format
that is functionally usable, if not actively used, by downstream processes.
Critically, the inference does not strictly follow, but does provide
defeasible evidence that this information is represented in the brain (Cox
and Savoy, 2003; Kriegeskorte and Bandettini, 2007). Thus, the biolog-
ical plausibility of classifiers is supposed to help constrain our interpre-
tation of decoding results.

Even with such hedging, however, it remains unclear whether such
inferences are warranted. Results showing that not all decodable infor-
mation can be read out in behaviour suggests that MVPA provides weak
evidence for representation as such (Williams et al., 2007), as do results
showing that coding in some discrete regions cannot be read out with
linear classifiers (Dubois et al., 2015). These findings challenge the idea
that the biological plausibility of classifiers places sufficient constraints
on how we interpret decoding findings. Central to the biological plau-
sibility argument is the idea that linear read-out is similar to the opera-
tions performed by the brain itself, unlike nonlinear methods that may be
overpowered compared to the operations used by the brain (Kamitani
and Tong, 2005; Misaki et al., 2010). It is frequently assumed that linear
read-out provides the right model, but as a hypothesis it largely remains
unexplored (Yamins and DiCarlo, 2016). Ritchie et al. (in press) argue
that linear methods can also be overpowered. In this respect, there is
little basis for biological plausibility providing an adequate constraint on
the representational interpretation of MVPA results.
ion is represented in a brain area (A), if it is used or usable by downstream areas
tly used in the generation of output behaviour. Revealing decodable information
aviour, provides weak support for claims about neural representation.
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Similar issues also arise with respect to model-based MVPA tech-
niques. Representational Similarity Analysis (RSA) is sometimes billed as
a technique for investigating the structure of neural representations, by
taking a geometric focus (Kriegeskorte et al., 2008a). Thus, by recon-
structing the dissimilarity structure from pattern responses, and
comparing them to different model dissimilarities, one can estimate how
well the relations between the pattern responses are captured by the
models. More advanced voxel-wise predictive models try to anticipate
the pattern response for stimuli. These techniques have the virtue of
directly connecting pattern responses to different hypotheses about how
a representation might be structured, but by themselves do not suffice to
provide evidence that the structure is exploited (Naselaris and Kay, 2015;
Huth et al., 2012).

Another consideration is the spatial scale of “readout”. Decodable
information can be found throughout the brain, particularly if one relaxes
the constraint on how information is read out. However, if one is sug-
gesting that the brain as a whole or some particular brain region actually
uses this information, this implies that the readout mechanism has access
to all this information. We ourselves are guilty of this error in a recent
study (Carlson et al., 2014). In examining a possible readout mechanism,
we showed reaction times for object categorisation could be predicted
from the structure of object category information decoded from the en-
tirety of inferior temporal (IT) cortex. In interpreting our results, we
assumed – without direct evidence – that a readout mechanism existed
which could monitor activity over such a large swath of cortex. The
important point is that if one aims to argue that the brain represents (and
uses) information revealed through decoding, evidence for a readout
mechanism capable of operating at approximately the same spatial scale
is essential. Without such evidence, it remains unclear whether such a
code has any representational significance at all.

4.3. Psychological plausibility as a constraint on interpretation

The most common proposal to reign in the representational inter-
pretation of MVPA findings is via connection to stimulus-directed
behaviour. The thinking goes that since observer behaviour is also a
downstream effect of neural representations of the stimulus, then
showing a connection between some behavioural measure and the
decodability of a stimulus should provide stronger evidence that the in-
formation uncovered with MVPA is in fact used by some downstream
process in a task-related manner (de-Wit et al., 2016; Naselaris et al.,
2011; Tong and Pratte, 2012; Williams et al., 2007).

However, mere connection to behaviour is not enough, for at least
two reasons. First, a predictive relationship between an MVPA measure
(like classifier accuracy) and subject behaviour could be spurious
(Ritchie et al., in press). Second, even if the relationship is not spurious, it
might not reveal how the information in a brain region is exploited. For
example, a common application of RSA is to construct a behavioural
dissimilarity matrix from similarity judgments for visual stimuli, which
can in turn be used to predict howwell these stimuli will be distinguished
by a classifier, and compared to a neural dissimilarity matrix constructed
from pairwise comparisons of neural activity patterns (Bracci and Op de
Beeck, 2016; Connolly et al., 2012; Mur et al., 2013; Wardle et al., 2016).
Since a dissimilarity matrix provides a general-format model of the
pairwise relationships between points in geometric space, a correlation
between the two matrices suggests that there is some correspondence
between the psychological space exploited by observers when making
the judgments, and the encoding space as reflected in the neural
dissimilarity matrix. However, it is important to recognize that such a
correspondence does not provide an account of how the neural responses
might be driving the participants' judgments. When correlated, the
behavioural dissimilarity matrix in effect provides one of potentially
many models that can be compared with the neural responses. The focus
is therefore not on how neural responses predict observer behaviour, but
the reverse: how observer behaviour can be used to model neural re-
sponses. So, while the relationship is not spurious, it is focused on the
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wrong predictive relationship.
While it is clear that observer behaviour is a (far) downstream effect

of the sort of read-out procedure utilised the brain, what is missing is a
connection to the neural code, as reflected in patterns of measured neural
activity, which allows us to take it as a proxy for this procedure. Or to put
the point differently: how does one provide evidence that the encoding
activation space of a region is what is driving the nuances of observer
behaviour? Directly comparing behavioural and neural dissimilarity
matrices already points us towards a promising approach, based on
distance-based models of observer responses of choice and reaction times
for categorisation, which we will briefly describe.

According to distance-based models, observer behaviour on catego-
risation tasks reflects distance metrics defined over psychological spaces
(Ashby and Maddox, 1993, 1994). This is true of many familiar ap-
proaches from psychology. Prototype models characterise observer
choice as a result of the distance of a stimulus representation in psy-
chological space to the central tendencies of the distribution of different
categories within the space, while exemplar models predict choice from
the summated distance of a target stimulus representation in comparison
to all other individual stimulus representations. Further models, inter-
mediary between these two (e.g. with local prototyping or clustering) are
also possible (Briscoe and Feldman, 2011; Vanpaemel and Storms, 2008),
as are models that adaptively compare stimulus representations to
different category clusters during category learning (Love, Medin, and
Gureckis, 2004). Rather than estimating distance between representa-
tions themselves, decision boundary models predict observer choice
using the distance between a stimulus and a decision boundary through
the space. This is the case with the simplest version of such models, signal
detection theory (Green and Swets, 1966), as well as its multidimensional
extensions (Ashby and Townsend, 1986). Nor are these models restricted
to predicting observer choice, but apply to reaction times as well (Ashby,
2000; Nosofsky and Palmeri, 1997; Ratcliff, 1985).

One way to conceptualize these models is that they offer theories of
how observers evaluate evidence when performing a categorisation task,
where the evidence in question is characterised in terms of a psycho-
logical space. If a brain region implements such a space, then we can
apply these same models to the neural spaces we reconstruct with MVPA
(de Hollander et al., 2016; Forstmann et al., 2011). If we can predict
observer behaviour from such a space, in line with a psychological model
of this space, then this would provide stronger (albeit far from conclu-
sive) evidence that the information contained in the space may be
exploited by downstream processes. The reason is that in this case the
models offer a hypothesis of how information present in neural activation
patterns are related to the evidence used by observers carrying out an
experimental task. It is thus the psychological plausibility of these models
that warrants treating observer behaviour as a proxy for downstream
processing, and provides evidence that the information may be formatted
in a manner that is used or is usable by the brain in a task relevant
manner (Ritchie and Carlson, 2016; Ritchie et al., in press).

The proposed connection between neural and psychological spaces is
not a new one (Edelman et al., 1998; Kriegeskorte et al., 2008a), but what
we believe has been under appreciated is its potential to help constrain
the representational interpretation of MVPA findings. Of course, behav-
iour is still operating as a proxy for the process of interest, but the virtue
of this approach is that behavioural data is easy to collect (either on- or
off-line), and there is a rich collection of distance-based models of choice
and reaction time that can be directly related to neural data sets. Indeed,
many researchers have already adopted approaches similar to what we
are suggesting, which we will briefly review.

Some studies have directly related categorisation models to neural
activation spaces. For example Op de Beeck et al. (2008) compared
exemplar models where the input space was either generated by observer
behaviour or from cellular recordings in monkey IT (Op de Beeck et al.,
2001). They found that the latter data in fact provided a better charac-
terisation of choice behaviour for a number of categorisation tasks
defined for simple parameterised shape stimuli. More recently Mack et al.
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(2013) compared exemplar and prototype models to neural activation
from across the brain and found that the former model had greater
mutual information with the pattern responses from multiple brain re-
gions. And Davis and Poldrack (2014) showed that neural typicality in
temporal and occipital brain regions was a strong predictor of observer
typicality judgments for novel learned object categories. Finally, Mack
et al. (2016) found that attentionally weighting of stimulus dimensions
for different categorisation tasks correlated with neural patterns in left
anterior hippocampus using a clustering model of category learning.

Another approach based on decision boundary models focuses on
reaction times rather than choice behaviour. A key aspect of these models
is that since a decision boundary is drawn to separate between the dis-
tributions of different stimuli, evidence close to the boundary will be
more ambiguous between stimulus types, while evidence far from the
boundary will be less ambiguous. Under the assumption that reaction
times tend to vary with the quality of evidence, a prediction of these
models is that distance a decision boundary negatively correlates with
reaction time (Ashby and Maddox, 1994; Pike, 1973). Applying this
model to the activation spaces reconstructed using MVPA, recently we
have tested the idea that distance from a classifier decision boundary
would likewise negatively correlate with reaction times (Ritchie and
Carlson, 2016). We found that the prediction was born out based on
neural patterns from ventral temporal cortex in humans (Carlson et al.,
2014), and with MEG decoding where we observed that the distance-RT
correlation tended to reflect the time course of classifier performance
(Ritchie et al., 2015).

The general application of these points is that if we want to make
inferences about the content and structure of neural representations that
are targeted with MVPA methods, then we would be well served to focus
on measures that make a connection to the downstream read-out pro-
cedures of the brain. Here we have highlighted one promising avenue,
which is to connect psychological models to the activation spaces
recovered with MVPA. However, this is just one approach, which itself is
not necessarily sufficient for inferring that the information latent in any
particular brain region is being read-out by later processing. The more
general point is that greater focus must be put on how decodable infor-
mation is used by the brain.

4.4. Moving beyond the third ghost

Theories are tested against stable phenomena. Yet even assuming the
existence of an uncontroversial phenomenon, theory testing can be
complex in its own right. This is not a new observation, and presented at
a general level we think hardly anyone would object. However, we have
suggested here that at least in parts of the decoding literature, phe-
nomenon and theory are often run together: that the discovery of
decodable information is taken to provide direct evidence about under-
lying representational capacities of a brain region. This is a problematic
inference, even when it happens upon the truth. We have tried to suggest
methods by which the inference can be made more reliable, but there is
plenty left to explore.

5. Conclusions

Machine learning methods are a valuable addition to the toolkit of
cognitive neuroscience. Indeed, it is the very power of machine learning
that gives rise to the “ghosts” we have identified. First, since these
powerful techniques can produce demonstrable results even when the
investigators do not fully understand what information is driving the
classification, this can mask the importance of determining the under-
lying neural source of data upon which the classification is based. Sec-
ond, the nature of these methods raises potential problems for the
inference from data to phenomenon. Precisely because decoding
methods often make it seem like no interpretation is required, misin-
terpretation can occur. Finally, problems can arise with the move from
phenomenon to theory when the discovery of decodable information is
98
taken to provide direct evidence about underlying representational ca-
pacities of a brain region. For each of these identified “ghosts” we have
suggested some ways to move beyond them, but much more remains to
be explored.

As with any scientific technique, the multi-step nature of the in-
ferences involved in decoding research in cognitive neuroscience creates
various interpretative challenges. By separating out the links in the
inferential chain, and showing how and why problems arise, we have
demonstrated how some of the more obvious pitfalls can be avoided.
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