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Mechanisms of color vision in cortex have not been as well characterized as those in sub-cortical areas, particularly in
humans. We used fMRI in conjunction with univariate and multivariate (pattern) analysis to test for the initial transformation
of sub-cortical inputs by human visual cortex. Subjects viewed each of two patterns modulating in color between orange-
cyan or lime-magenta. We tested for higher order cortical representations of color capable of discriminating these stimuli,
which were designed so that they could not be distinguished by the postulated L–M and S–(L + M) sub-cortical opponent
channels. We found differences both in the average response and in the pattern of activity evoked by these two types of
stimuli, across a range of early visual areas. This result implies that sub-cortical chromatic channels are recombined early in
cortical processing to form novel representations of color. Our results also suggest a cortical bias for lime-magenta over
orange-cyan stimuli, when they are matched for cone contrast and the response they would elicit in the L–M and S–(L + M)
opponent channels.
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Introduction

Our rich experience of color includes the ability to
discriminate and identify a diverse range of combinations
of hue, saturation and luminance, yet our perceptual
experience is based on the activity of just three categories
of cone photoreceptor and the transformation of these
signals by sub-cortical and cortical areas. At the sub-
cortical level, there exist chromatically opponent channels
(L–M and S–(L + M)) that carry information in parallel to
visual cortex via the parvocellular and koniocellular layers
of the LGN (Derrington, Krauskopf, & Lennie, 1984).
Cortical mechanisms of color vision are generally less

well understood, although psychophysical adaptation
experiments indicate the existence of higher-order color
mechanisms in the human visual system, which receive
input from both the opponent channels of sub-cortical areas
(Krauskopf, Williams, Mandler, & Brown, 1986; Webster
& Mollon, 1991; Zaidi & Shapiro, 1993). In macaque it
has been demonstrated that there are cells as early as V1
which prefer chromatic directions away from the cardinal
directions that isolate the L–M and S–(L + M) mecha-
nisms (Conway, 2001; de Valois, Cottaris, Elfar, Mahon,
& Wilson, 2000), implying a combination of information
from the sub-cortical channels early in visual cortex. For
cortical cells to have chromatic preference intermediate to
the cardinal axes, there must be some combination of the
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L–M and S–(L + M) channels. In a recent fMRI study,
Brouwer and Heeger (2009) found that the principal
components of the response in V1 are consistent with a
response dominated by an opponent coding of color, as
found in sub-cortical areas, but that by hV4 and VO it more
closely resembles our perceptual color space. That is, V1
shows a differential response to variations in color but not a
continuous representation of hue, while in higher areas
colors of similar hue evoke similar responses. This finding
does not rule out the possibility that the signals of the
fundamental pathways (L–M and the S–(L + M)) are
combined in the early visual areas, such as V1, a possibility
we address specifically in this study.
We obtained high resolution functional images of the

BOLD (blood-oxygen-level-dependent) response from
subjects’ occipital and parietal lobes while they viewed
colored stimuli. Previous studies of cortical chromatic
mechanisms in humans have used perceptually relevant
hues (Brouwer & Heeger, 2009; Parkes, Marsman, Oxley,
Goulermas, & Wuerger, 2009). Our stimuli were not
chosen for their perceptual relevance, but were designed
to be metameric to the hypothesized sub-cortical chro-
matic mechanisms. Specifically, the stimuli were designed
so as to fulfill the following conditions: (1) to induce the
same magnitude of activity in the L–M opponent channel;
and (2) to induce the same magnitude of activity in the
S–(L + M) opponent channel. This was achieved by
combining a given L–M modulation with a given S-cone
isolating modulation in each of two different phases. When
jS was in phase with M then the stimulus appeared lime-
magenta; when +S was in phase with M then it appeared
orange-cyan. The lime-magenta and orange-cyan stimuli
can only be distinguished by the BOLD signal if there are
cells which receive a combination of inputs from the L–M
and the S–(L + M) pathways.
Univariate and multivariate analyses tested whether the

BOLD response within each cortical visual area depended
upon the color of the stimulus. Univariate analyses show
what information about the stimulus is detectable in the
average activity across a region, while multivariate classi-
fiers are capable of also learning differences in the pattern
of activation between stimuli. Multivariate classification
analysis (for a review, see Haynes and Rees, 2006) is a
useful tool to test for differences in the BOLD response of
a visual area even where the mean activity of the area is
not significantly different between stimuli, and has been
used to infer the selectivity of different early visual areas
for a range of basic visual attributes and their combination
(Haynes & Rees, 2005a, 2005b; Kamitani & Tong, 2005,
2006; Mannion, McDonald, & Clifford, 2009; Parkes et al.,
2009; Seymour, Clifford, Logothetis, & Bartels, 2009;
Sumner, Anderson, Sylvester, Haynes, & Rees, 2008).
Both in the univariate and multivariate analyses

employed here, an algorithm is trained to classify the
stimulus from activity across a region, and tested on novel
data. Above chance performance indicates that the area

contains information about the stimulus dimension that was
varied. Here, our premise is that if we can use the activity
across a visual area to discriminate between our stimuli
then that area contains a representation of color that could
only be generated through a transformation of the signals
from the sub-cortical L–M and S–(L + M) pathways.

Materials and methods

Color calibration procedures and display
system

Stimuli were generated and displayed using Matlab
(version 7) software on a Dell Latitude laptop computer
driving an nVidia Quadro NVS 110M graphics card to draw
stimuli to a 35 � 26 cm Philips LCD monitor, with 60 Hz
refresh rate, viewed from a distance of approximately
1.58 m. Scanning took place in a darkened room. Subjects,
while lying in the scanner, viewed the monitor through a
mirror mounted above the head cage which reflected the
image from the LCD monitor located behind the scanner.
Stimuli were calibrated in situ for the LCD monitor and
mirror arrangement, using measurements obtained with a
PR-655 SpectraScan spectrophotometer (by Photo
Research Inc.).
Changes in both chromaticity and luminance of the

screen with increasing R, G and B values were taken into
account when generating the experimental stimuli. The
CIE (xyY) coordinates measured for 16 values during
calibration were interpolated to 255 values using the best-
fitting spline, and these were used to calculate the luminance
and chromaticity for each combination of R, G and B
intensity values.
Data were collected on five subjects (three male), aged

between 24 and 40 years, with normal or corrected to
normal visual acuity and normal color vision, as tested
using Ishihara plates (Ishihara, 1990). All subjects pro-
vided informed consent, and the entire study was carried
out in accordance with guidelines of the University of
Sydney Human Research Ethics Committee.

Chromatic, spatial and temporal stimulus
properties

Example stimuli are shown in Figure 1. The stimulus
was an annulus, centered on the fixation point, with an
inner diameter of 0.8 degrees visual angle, and an outer
diameter of 7.8 degrees. The remainder of the screen was
held at the mean luminance, which was 6.78 cd/m2 [CIE
(1931) x, yÈ0.300, 0.337], and all stimuli were produced
by spatiotemporal modulation around this point. The
annulus contained a spatial pattern that counterphased
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sinusoidally at a temporal frequency of 1 Hz. The spatial
pattern was the multiplication of a radial and a concentric
sinusoidal modulation, (the resultant plaid pattern is shown
in Figures 1A and 1B). All these modulations can be
represented in a three-dimensional color space described
previously (Derrington et al., 1984; DKL space). Along
the L–M axis only the signals from L and M cones vary,
in opposition, without variation in luminance. Along the
orthogonal S-cone isolating axis there is no modulation of
either the L or M cones. The L–M and S axes define a
plane in which only chromaticity varies. Normal to this
plane is the luminance axis along which the signals from

the L and M cones vary in proportion. The axes were
derived from the Stockman and Sharpe (2000) 2-degree
cone spectral sensitivities and adjusted individually for
each observer (see below). The scaling of these axes is
largely arbitrary; here we used modulations along the
isoluminant axes that were 90% of the maximum modu-
lation achievable within the gamut of the monitor.
Modulation along the L–M axis produced maximum cone
contrasts of 15.4% in the L-cone and 17.8% in the M-cone;
along the S-cone axis the maximum S-cone contrast was
79.6%. Cone contrast values for all stimuli are listed in
Table 1. Each frame of the stimulus was generated prior

Figure 1. Stimuli used in the fMRI experiment; A: the color of the stimulus modulated sinusoidally between the upper plaid and the lower
plaid at 1 Hz. The stimuli on the left are orange and cyan, on the right, the stimuli are lime and magenta. For both color pairs, minimum
motion was used to determine each subjects’ perceived equiluminance point, and a 25% luminance modulation was added. In the first
and third pair of stimuli the light/dark modulation is paired with cyan/orange and lime/magenta, respectively. In the second and fourth
stimuli these pairings are reversed. B: Example stimulus with fixation task. At fixation, there was a light gray cross surrounded by a high
contrast ring, as illustrated above. The high contrast ring provided feedback to subjects when they made small eye movements, since an
afterimage would become visible. While subjects fixated on the central cross (partially obscured by the digit), they were required to
respond with a button press whenever either of two target items were presented in the digit stream. Digits updated at 3 Hz, were
presented in random order, and could be 0 to 9 inclusive, each in either black or white. The target items were a conjunction of a digit and a
particular color, for example either a black 3 (shown here) or a white 7. The fixation task was unrelated to the experimental stimulus, which
was presented in the annular region surrounding fixation. C: Modulation of cardinal sensitive mechanisms over time in the experimental
stimulus, for an example 18 seconds including a transition from a light magenta-dark lime block to a light cyan-dark orange block. At each
transition, the non-cardinal modulation switched from a lime-magenta block to an orange-cyan block or vice versa. At each transition there
was a phase reversal in either the L–M or the S–(L + M) cardinal modulation; here there is a phase reversal in the L–M modulation at the
time of transition. The luminance (light–dark) modulation had no reversals at any time. The amplitude of response of any cardinal sensitive
mechanisms should be constant across the lime-magenta and orange-cyan blocks. Phase reversals are the only cue that could be used
to discriminate the stimuli where the cardinal sensitive mechanisms are kept independent, but the block order was balanced such that
this cue could not be used to predict the stimulus. We used one of two block orders for each run, where the second was a reversal of the
first order.
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to the experiment as a bitmapped image, and then these
images were drawn to the screen for each stimulus
presentation using routines from PsychToolbox 3.0.8
(Brainard, 1997; Pelli, 1997).
There were four stimuli, chosen such that over time all

four would: (1) equally stimulate the L–M opponent
channel; and (2) equally stimulate the S–(L + M) opponent
channel. The angle of each stimulus within the isoluminant
plane was intermediate to that of the L–M and S–(L + M)
axes, and was defined as a vector addition of modulations
along those two axes. When the L–M modulation was in
phase with the S–(L + M) modulation the stimulus
modulated between magenta and lime; when these pairings
were reversed the modulation appeared orange-cyan. The
point of subjective isoluminance (the angle of the isolu-
minant plane from the luminance axis) was estimated
separately for each observer using the minimum motion
technique described by Anstis and Cavanagh (1983), for
the magenta-lime and for the orange-cyan modulations. A
25% luminance modulation was then added to the sub-
jectively defined isoluminant modulation in one of two
phases. The four stimuli therefore appeared: light magenta–
dark lime, dark magenta–light lime, light orange–dark cyan,
and dark orange–light cyan (example stimuli in Figure 1A,
and example cone contrast values in Table 1).
The luminance modulation was added so that if there

were any residual differences in luminance between the
lime-magenta and orange-cyan blocks, this difference
should be masked by the much larger luminance modu-
lation. The contrast response of early visual areas to
luminance defined stimuli is steeper at low than high
contrast (for example, see Liu & Wandell, 2005). Thus a
luminance artifact in our stimuli would result in a much
smaller difference in the response to the two stimuli than
if there was no luminance modulation (and hence lower
luminance contrast). The same rationale underlies the use
of random luminance noise to mask potential luminance
artifacts (Birch, Barbur, & Harlow, 1992; Kingdom,
Moulden, & Collyer, 1992; Sumner et al., 2008). For the

analyses shown in Figure 4 the classifier was trained and
tested with two groups of blocks: one group included the
two types of lime-magenta blocks (the two types differed
in the relative phase of the luminance modulation) and the
other group included the two types of orange-cyan blocks.
We also performed a control analysis, where the classifier
was trained to discriminate lime-magenta vs. orange-cyan
on blocks that had only one luminance phase (one of the
two types of lime-magenta blocks, and one of two types
of orange-cyan blocks), and then tested on its ability to
discriminate the other two types. The results of this
analysis are shown in Appendix B.

Experimental design

All experimental scans were completed during a single
session for each subject. The session included ten func-
tional scans, each lasting 4.5 minutes. During each scan
the subject viewed 18 blocks of the experimental stimulus,
alternating between orange-cyan and lime-magenta blocks.
Each block was 15 seconds long, and data from the first
and last block were excluded from our analysis. In order
to change the color of the stimuli, either the L–M or the
S–(L + M) modulation must change phase, as illustrated
in Figure 1C. This phase reversal is likely to induce an
increased response of a neural population which responds
to the relevant cardinal color, as in the characteristic
response rebound used in fMRI adaptation (for example,
see Engel & Furmanski, 2001; Kourtzi, Erb, Grodd, &
Bülthoff, 2003). It is also possible that the response to the
phase reversal may be evident in the BOLD signal, even
when averaging across activity within a block, and could
potentially be used to discriminate the two types of stimuli
(for example, if an orange-cyan block always commenced
with a L–M phase reversal). In order to eliminate this
potential source of information about the color of the
stimuli, we balanced the stimuli so that the pattern of
phase reversals could not be used to predict the stimulus.
We used one of two block orders for each run, where the
second was a reversal of the first order.

Localizer

To select those voxels in each visual area most
responsive to the experimental stimuli, two additional
localizer scans during the same session as the experimental
scans for each subject. Using a localizer scan that is
separate from the experimental data avoids circularity that
could otherwise be present (Kriegeskorte, Simmons,
Bellgowan, & Baker, 2009). Localizer scans included a
total of 17 blocks of 15 seconds each, comprised of
stimulus blocks interleaved with blocks of fixation only.
The stimulus blocks included 2 lime-magenta blocks and
2 orange-cyan blocks, in addition to 4 black-white blocks

Stimulus Color
L-cone
Contrast

M-cone
Contrast

S-cone
Contrastt1.1

Dark Cyan j0.154 0.015 0.688t1.2

Light Cyan 0.031 0.178 0.796t1.3

Dark Orange j0.031 j0.178 j0.796t1.4

Light Orange 0.154 j0.015 j0.688t1.5

Dark Magenta j0.031 j0.178 0.688t1.6

Light Magenta 0.154 j0.015 0.796t1.7

Dark Lime j0.154 0.015 j0.796t1.8

Light Lime 0.031 0.178 j0.688t1.9

t1.10t1.12 Table 1. Cone contrast values for stimuli calibrated for the
subjective equiluminance point of observer EG. The background
of the stimuli had CIE xy coordinates of 0.30, 0.34, and a
luminance (Y) of 6.78 cd/m2.
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where the stimulus had the same spatial arrangement but
was modulated between black and white.

Fixation task

Throughout experimental and localizer scans, subjects
performed a task at fixation that was unrelated to the
annular experimental stimulus. This task was designed to
be attentionally demanding in order to direct attention
away from the experimental stimulus as much as possible.
While this would have reduced the BOLD response, and
so likely decreased the ratio of signal to noise in the data
which were input to the classifier, it greatly reduces the
chance that subjects could have systematically directed
more attention to one type of stimulus block.
Subjects were required to detect a conjunction of contrast

polarity and number in a digit stream of the digits 0 to 9
inclusive, presented at fixation, updated at 3 Hz. Digits
were either black or white, against the mean gray of the
background, as seen in Figure 1B, and the order was
randomly generated for each run. Subjects responded with
a button press to the onset of either of two target digits,
one only when black and the other only when white (for
example a black 3 or a white 7). Responding to a con-
junction of digit and contrast polarity made this a difficult
task. Target digits were updated at the beginning of each
run to increase task difficulty and minimize practice effects.
All subjects performed the task significantly above

chance (p G 0.01, permutation test), demonstrating that
they were engaged in the task, but each subject also made
errors, implying that the task was not trivial and required
attention. For no subject was there a significant difference
in performance between lime-magenta and orange-cyan
blocks, consistent with equal attentional resources being
devoted to the task in each case.

fMRI methods

fMRI data were collected using a 3T Philips scanner
(Symbion Imaging Centre, Prince of Wales Medical
Research Institute, Sydney, Australia), with a birdcage
head coil.

Anatomical measurements and definition
of gray matter

The anatomical image for each subject was generated
from the average of three scans. Two of these were high
resolution (1 � 1 � 1 mm) structural MR images of each
subject’s whole brain, acquired using a Turbo Field Echo
(TFE) protocol for enhanced gray–white contrast. A third,
higher resolution (0.75 � 0.75 � 0.75 mm) scan of the
caudal half of the head was also acquired in order to
recover more anatomical detail of the occipital lobes.
Using the Statistical Parametric Mapping (SPM) soft-

ware package SPM5 (Frackowiak, Friston, Frith, Dolan, &

Mazziotta, 1997), anatomical images were each reoriented
to approximately the same space using anterior and
posterior commissures as anatomical landmarks. Fine
alignment of these anatomical images was carried out
using normalized mutual information based coregistration,
and each of the anatomical images were resampled so that
they were in the same voxel space with a resolution of
0.75 � 0.75 � 0.75 mm. From each image we removed
intensity inhomogeneities using a nonparametric inhomo-
geneity correction method (Manjón et al., 2007), and
normalized the images such that the white matter had an
approximate intensity of 1. The coregistered, inhomogeneity
corrected, normalized images were then averaged together
to produce a mean anatomical image for each subject.
ITKGray software (Yushkevich et al., 2006) was used to

define the white matter of each subject, initially using
automatic segmentation tools, then using manual editing.
The segmentation image was imported into mrGray, part
of the mrVista software package developed by the
Stanford Vision and Imaging Lab (http://white.stanford.
edu/software/). In mrGray, gray matter was ‘grown’ out
from the white matter in a sheet with a maximum thickness
of 4 voxels.

Functional measurements

fMRI data were acquired using a T2*-sensitive, FEEPI
pulse sequence, with echo time (TE) of 32 ms; time to
repetition (TR) of 3000 ms; flip angle 90; field of view
192 mm � 70.5 mm � 192 mm; effective in-plane
resolution 1.5 mm � 1.5 mm, and slice thickness 1.5 mm.
47 slices were collected in an interleaved, ascending order,
in a coronal plane tilted such that the scan covered the
whole of the occipital lobe and the posterior part of the
parietal and temporal lobes. Using SPM5, all functional
data were preprocessed to correct for slice time and head
motion before alignment to the structural data. Data from
functional scans were aligned to a whole head anatomical
scan acquired in the same session, using normalized mutual
information based coregistration. The functional data were
then aligned to the subject’s average anatomical by first
aligning the within session anatomical with the average
anatomical scan, then applying the same transformation to
the functional data.

Definition of retinotopic areas

For each subject, the precise anatomical locations of the
early areas of visual cortex (V1, V2, V3, V3A/B, hV4,
and VO) were found functionally using standard retino-
topic mapping procedures (Engel, Glover, & Wandell,
1997; Larsson & Heeger, 2006; see Wandell, Dumoulin,
& Brewer, 2007, for a summary). Subjects were scanned
while viewing first a rotating wedge then an expanding ring
stimulus, overlaid on a fixation cross of light gray lines, as
shown on the key above the maps in Figure 2 (Schira,
Tyler, Breakspear, & Spehar, 2009).
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Averaged data from the wedge and ring stimuli were
smoothed with a Gaussian kernel of half width 1.5 mm,
then projected onto a computationally flattened represen-
tation of the cortex for each hemisphere of each subject,
using mrVista. Areas V1, V2, V3, V3A/B and hV4 were
manually defined on the phase and eccentricity maps derived
from the wedge and ring stimuli (shown for an example
subject in Figures 2A and 2B, respectively), using the
conventions described by Larsson and Heeger (2006).
According to these definitions the foveal representation at
the occipital pole is shared by V1, V2, V3, and hV4, while
V3A and V3B, which border the dorsal part of V3, share a
dorsal fovea. For our analysis we did not attempt to
separate V3A and V3B. We defined hV4 as a ventral
hemifield representation that borders the ventral part of V3.
For area VO, the phase and eccentricity maps were

considered in conjunction with a flattened map of those
voxels that responded more to chromatic than achromatic
stimuli in the localizer scan (as shown for an example
subject in Figure 2C). Where it existed, we used the

hemifield representation from the phase and eccentricity
maps to define VO. Where the retinotopic map from the
wedge and ring stimuli was unclear, we tended towards a
liberal definition of VO, in order to avoid excluding any
voxels in the region which showed a preference for
chromatic stimuli in the localizer analysis. Each retinotopic
area was defined on the flattened map of a subject’s cortex
then transformed into the space of the subject’s anatomical,
smoothed (FWHM= 1.5 mm), and resliced to the resolution
of the functional images using 4th degree B-spline
interpolation. Voxels assigned to each visual area were
allocated a value reflecting the cumulative influence of such
transformations. To prevent overlapping voxels between
adjacent visual areas, each voxel was assigned to the visual
area for which it possessed the greatest value.
AreaMT+was defined on the basis of a separate localizer

scan in which blocks of low contrast static and moving dots
were interleaved with fixation only blocks. In SPM5, we
specified a general linear model of this data, and defined
MT+ by finding lateral clusters of voxels that responded

Figure 2. Example maps of functionally defined retinotopic areas for the left and right hemispheres of subject DM. In each of A, B, C and D
the underlying grayscale image shows the flattened map of visual cortex, centered on the occipital pole; the darker the gray the deeper
the sulcus. In D the grayscale anatomical map was darkened to increase the visibility of the overlaid image. A & B: Flattened maps of
visual cortex overlaid with phase maps of the response to the wedge and ring stimuli, respectively. Above these maps is a schematic of
the stimulus (top left) and a color map showing the area of the visual field which each color corresponds to in the phase maps (top right).
In C the same flattened map of visual cortex is overlaid with a heat map showing those voxels which responded more to the chromatic
than the achromatic stimuli; the significance of this result for each voxel is indicated by the T-statistic color map above. Areas V1, V2, V3,
V3A/B and hV4 were defined on the basis of the wedge and ring phase maps in A and B, while area VO was defined according to a
combination of the wedge and ring phase maps in A and B, and the contrast in C. MT+ was defined according to a motion versus static
dots localizer (not shown). The borders of each of these areas are drawn on each of the maps in A–D; the key on the right indicates which
of the outlined regions corresponds to each visual area. In D, the heat map indicates those voxels that were included in the analysis:
those which responded significantly more to chromatic or achromatic versions of our stimuli than to fixation; the significance of this result
for each voxel is indicated by the T-statistic color map above.
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more to moving than to static dots. The definition of MT+
was projected onto the flattened map for the purposes of
illustration, as in Figure 2, but the original 3D definition of
MT+ was used in the analysis of the functional data.

Functional preprocessing

Data from each of the two localizer scans were processed
using the methods described above, then analyzed using a
General Linear Model (GLM) in SPM5. We pooled
responses to the luminance and chromatically defined
stimuli and contrasted these with the response to the fixation
only blocks. The subsequent analyses included only those
voxels that responded significantly more (p G 0.05,
uncorrected) to the stimulus than fixation only. These
voxels are shown on an example flattened map for one
subject in Figure 2D.
For all functional scans the BOLD signal was labeled with

the stimulus presented 2 images (6 seconds) previously, in
order to compensate for the delayed hemodynamic response,
then was highpass filtered (cutoff 128 s, using filtering
methods from SPM5) in order to remove low frequency
confounds in the data, and finally converted into z-scores
for each of the ten runs in order to reduce variability from
inter-run differences. Data from each voxel were z-scored
separately. Within each 15 second block the BOLD
response, normalized according to the procedures described
above, was averaged across the 5 measurements to give a
single score for each block in each run.

Classifier analysis

Classifiers were restricted to each of several functionally
defined visual areas for each subject and trained to dis-
criminate the two patterns. We compared the performance
of classifiers trained on two types of data for each area: in
the univariate case, the classifier was trained and tested on
the average activation across voxels within an area (that
is, 1 value per block), while in the multivariate case the
classifier was trained and tested on the pattern of activity
across voxels within an area (n values per block).
We used a linear support vector machine (SVM)

classification technique in our analysis. Support vector
machines are powerful in their ability to learn a decision
rule for multivariate data (Bennett & Campbell, 2000): in
our case, for n voxels with 144 data points each (72 from
lime-magenta and 72 from orange-cyan blocks) they learn
the hyperplane which best separates the data points in an n
dimensional space, where each dimension corresponds to
the normalized response of one voxel (using linear SVMs,
we require that the hyperplane’s projection onto any two
dimensions is linear). We evaluated classifier performance
on its ability to generalize, i.e. to correctly discriminate
data that were not included in the training set. For the
univariate classifier the technique was the same, but there
was only one dimension along which the 144 data points

varied, so the power of the support vector machine was
not utilized.

Cross-validation: Leave-one-out train and test

Classification analysis was performed using a Matlab
(version 7.5) interface to SVM-light 6.01 (Joachims, 1999).
The classifier was trained on the scores from 9 runs and
tested on a tenth; this procedure was repeated 10 times.
This leave-one-out train and test procedure resulted in the
data from each run being used as test data once, giving an
average classifier performance (reported in the Results
section as a percentage correct) based on the accuracy
across 160 classifications, while ensuring that the test data
never included data that were used in training.
We repeated the classification analysis with increasing

numbers of voxels (n) within each visual area, from n = 3
voxels, to the n = maxN, where maxN is the total number
of voxels that reached significance in the localizer analysis.
Voxels in each area were ranked according to their t statis-
tic from the localizer analysis, based on the separate local-
izer scans, in order to select voxels that responded to the
area of visual field occupied by our experimental stimuli
and exclude those which represented areas of the visual field
which were more foveal or peripheral than our annular
stimuli. The top n most significant voxels were used in each
case. Classifier performance generally increased as more
voxels were included in the analysis, but there was some
variability around this trend. To summarize classification
performance (as reported below) we fit the classifier
performance (P) as number of voxels (n) increased with
an exponential growth function which reaches a limit (L),
given by

P ¼ 0:5þ ðLj0:5Þð1j ejn=cÞ; ð1Þ

where 0.5 is chance performance (at n = 0), and c is a
curvature parameter, specifying how many voxels the
curve takes to reach the limit, L. When the curve fit the
data, the classifier performance reported below corresponds
to the limit (L) of the growth function. When the curve
could not be fit to the data within 100 iterations of the
Matlab function nlinfit (usually when classifier perfor-
mance was low), the average classifier performance, rather
than the limit of the curve, is reported as the summary
statistic of classifier performance. Classifier performance
as a function of number of voxels, along with the best-
fitting curve, is plotted in Appendix A.

Permutation analysis

To test the statistical significance of classifier perfor-
mance, we ran a permutation analysis to estimate classi-
fication accuracy expected by chance alone. Permutation
tests are non-parametric and so do not include an assumption
of normality, and such tests have previously been employed
to evaluate classification analysis (Mourao-Miranda, Bokde,
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Born, Hampel, & Stetter, 2005). For each area in each sub-
ject we performed the same analysis as that described above,
except that before training the classifier we randomly per-
muted the stimulus labels associated with each block in the
training data set. Using 1000 repetitions of this permutation
analysis, we generated a population of 1000 estimates of
the classifier accuracy that could be expected in cases where
the data did not contain any stimulus-related information.
For each iteration of the permutation analysis we averaged
these estimates across subjects for each area and compared
these 1000 values with the observed between-subject mean
accuracy. In the statistics reported below for classifier per-
formance, p-values were calculated by finding the propor-
tion of these 1000 estimates which were greater than the
observed classifier accuracy.

Results

We tested for the presence of cortical representations of
color capable of discriminating stimuli that cannot be dis-
tinguished by the L–M and S–(L + M) sub-cortical oppo-
nent channels. Our lime-magenta and orange-cyan stimuli
contain the same L–M and S–(L + M) modulations, varying
only in the phase that these modulations are added together.
For the lime-magenta stimuli, the L–M and S–(L + M)
modulations are the same phase, whereas for the orange-
cyan stimuli the L–M and S–(L + M) modulations were in
opposite phase.We used fMRI to measure changes in BOLD
signal as an indirect measure of neural activity, then asked
the extent to which the visual stimulus could be discriminated
from patterns of brain activity in a predefined visual area.
Below, we report stimulus related differences in both the

mean activity and pattern of activity across a range of
regions. There was a small but reliable bias across subjects
for lime-magenta over orange-cyan stimuli in the mean
activity across each region, and we found that the differ-
ence in the mean activity was sufficient for a univariate
classifier to learn to correctly discriminate the stimuli. We
also found evidence of additional stimulus-related infor-
mation in the pattern of activity across V1 and V2, using
multivariate classifiers.

Consistent bias for lime-magenta over
orange-cyan stimuli in average activity

There was a significant difference in the response to
lime-magenta vs. orange-cyan stimuli, impossible without
combination of signals from the fundamental cone-opponent
channels. For the univariate analysis we averaged across
those voxels within each area for which there was a sig-
nificant difference in their response to the localizer stimulus
versus fixation. The average z-scored activity across an
area for each block was treated as a separate measure of
the area’s response to lime-magenta or orange-cyan stimuli,

giving 80 measurements for each; the distributions of these
measurements for each subject are shown in Figure 3.
In all subjects each area that showed a significant bias

for one color modulation showed the same bias; signal was
greater for lime-magenta than for orange-cyan. As shown
in Figure 3, the mean of the 80 lime-magenta blocks was
significantly greater than the 80 orange cyan-blocks (p G
0.05, two-tailed t-test); in 25 areas across 5 subjects. The
only area for which there was not a significant difference
between the two types of stimuli for any subject was area
MT+. We conclude that stimuli which equally modulate
the cardinal axes of color space are not equally repre-
sented in visual cortical areas, and this biased representa-
tion is seen as early as V1.
Consistent with the differences in the average response

across each region, univariate classifiers performed signifi-
cantly better than chance as early as V1, as shown in Figure 4
(light gray bars). The average univariate classification per-
formance across subjects in all areas was significantly above
chance (p G 0.05, one-tailed permutation test). MT+ showed
the lowest performance for 4 of 5 subjects.
For 4 of 5 subjects, the area with the best classifier

performance was V2. The earlier cortical visual areas (V1,
V2 and V3) generally outperformed the dorsal area V3A/B,
as well as the ventral areas hV4 and VO. V1, V2 and V3
generally had a greater number of voxels, which may
account for their high performance. In order to test this, we
repeated the classifier analysis on 100 voxels that were
randomly chosen from those voxels in the area that
responded to the localizer stimulus. For this subset of
100 voxels, the classifier accuracy averaged across subjects
in V1, V2 and V3 (61, 64 and 61%) was still better than
in V3A/B, hV4 and VO (45, 56 and 52%). This suggests that
differences in classifier performance cannot be accounted for
by the generally greater number of voxels included in the
analysis for areas V1, V2 and V3. Area MT+ had fewer
than 100 voxels that responded to the localizer in all sub-
jects, and so was excluded from this reanalysis.

Additional information in the pattern
of activity for areas V1 and V2

Multivariate pattern classifiers were also trained to discrim-
inate the two types of stimulus, allowing us to test for addi-
tional stimulus related information in the pattern of activity
across each area. The univariate classifier was trained on a
subset (9 of 10 runs) of the average data (as plotted in
Figure 3), and tested on the remainder. The multivariate
classifier was trained and tested in the same way on data
which was not averaged across voxels, so that in addition to
the average it can learn differences in the pattern of activity
across an area between blocks. This analysis allows a com-
parison of the results from the univariate and multivariate
classification techniques, which gives an indication of how
the information in the pattern of activity across an area differs
from information given by the mean response.
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Multivariate classification performance across areas (see
Figure 4) followed a similar trend to that found for the
univariate classifiers; earlier visual areas (V1, V2 and V3)
tended to outperform V3A/B, hV4 and VO. Classification
accuracy was poorest in MT+, where performance was not
significantly different from chance. This trend was also
found when the classifier was trained and tested on one
hundred voxels, randomly chosen from those voxels in the
area that responded to the localizer stimulus: the average
between-subjects classifier accuracy in V1, V2 and V3
(63, 67 and 59%) was still better than in V3A/B, hV4 and

VO (57, 56 and 49%). Classification performance was
generally higher for multivariate classifiers, and this
difference was significant (p G 0.01, two-tailed permutation
test) for areas V1 and V2. In VO and MT+, the univariate
classifier outperformed the multivariate classifier, but this
difference was not significant.
Since there was no requirement on our classifiers to

predict an equal number of orange-cyan and lime-magenta
blocks, it was possible for classification performance to be
better for one type of test stimulus. For example, if
classification of orange-cyan test stimuli were at chance

Figure 3. Mean activity in response to lime-magenta vs. orange-cyan blocks, across different cortical visual areas, for each subject. For
each block, the z-scored BOLD response was averaged across all voxels for which there was a significant difference in their response to
the localizer stimulus versus fixation. The histograms plot the distribution of these averages. Behind each histogram, a normal distribution
of the same mean and standard deviation is plotted for reference. For all subjects, where there was a significant difference between the
response to lime-magenta and orange-cyan blocks (tested with a two-tailed t test), the response to the lime-magenta blocks was greater
than the response to orange-cyan blocks. The functional data did not include a fixation block; the average % signal change in the color
blocks in the localizer data, relative to fixation (T1 standard error of the between subject mean) were V1: 0.65 (T0.16); V2: 0.78 (T0.19);
V3: 0.56 (T0.17); V3A/B: 0.18 (T0.16); hV4: 0.67 (T0.27); VO: 0.35 (T0.19); MT+: j0.09 (T0.17).
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but classification performance on lime-magenta blocks
were perfect, this would give an overall performance of
75%. We found that this was not the case; for both univar-
iate and multivariate classifiers, classification performance
for lime-magenta test stimuli and classification perfor-
mance for orange-cyan stimuli showed a positive linear
correlation (univariate: slope = 0.33, R2 = 0.13, p G 0.05,
multivariate: slope = 0.85, R2 = 0.61, p G 0.01).
Increased performance of the multivariate classifier

compared with the univariate classifier in V1 and V2
indicates that there are reliable, stimulus-related patterns
of activity in these areas. If the pattern of activity across
voxels were uninformative about the non-cardinal color of
the stimulus, we would expect the multivariate classifier
performance to be at best the same as the univariate case
(since if the classifier learnt a pattern that was not
stimulus-related, performance could decrease).

Discussion

We found evidence in human visual cortex for repre-
sentations of color as early as V1 that combine informa-
tion from the L–M and S–(L + M) opponent pathways

hypothesized to carry information in parallel from sub-
cortical areas to cortex. The ability to use BOLD activity
to discriminate stimuli matched for the postulated sub-
cortical mechanisms demonstrates that the neural popula-
tion must include neurons modulated by signals from both
the chromatically opponent pathways. Below we discuss
the implications of these results for how color is repre-
sented in human visual cortex, in particular the bias for
lime-magenta over orange-cyan stimuli, and differences
between visual areas in classifier performance.

Origin of asymmetry in the representation
of two non-cardinal color modulations

We found a common bias across cortical visual areas
for lime-magenta over orange-cyan blocks, even though
our stimuli were matched for cone contrast, and for the
response of sub-cortical pathways. The consistency of this
bias across subjects suggests that it reflects a typical
asymmetry in cortical representations of color. Specifi-
cally, this finding implies that there is a more numerous or
more active population of neurons which respond to lime
and/or magenta than to orange and/or cyan stimuli.
There is some evidence for a bias in the opposite direction

in single-unit recordings in macaque V1, and from human
psychophysics. Both Conway (2001) and Solomon and Lennie
(2005) found a bias when testing the responses of macaque
V1 cells to L, M and S-cone isolating stimuli. Of the 45
(Conway, 2001) and 19 (Solomon & Lennie, 2005) L–M
color opponent cells that also responded to S-cone isolating
stimuli, for 93% and 89% of cells (respectively) the response
to the S-cone isolating stimulus had the same sign as the
M-cone isolating stimulus; that is, the cells preferred a color
direction closer to orange-cyan than lime-magenta. Krauskopf
and Gegenfurtner (1992) report subtle psychophysical asym-
metries for human observers between the non-cardinal axes
in the effects of adaptation on discrimination threshold. Their
data are consistent with a greater prevalence of adaptable
mechanisms tuned to orange-cyan than to lime-magenta.
Our data imply a bias of the opposite direction in human
visual cortex, suggesting further work is necessary to recon-
cile these findings. In a recent study on human discrim-
ination thresholds, Danilova and Mollon (2010) found that
discrimination thresholds were lowest along a line in chro-
maticity space connecting unique blue and unique yellow.
The hypothetical channel Danilova and Mollon (2010)
propose to account for their results would lie closer to the
lime-magenta modulation than the orange-cyan modula-
tion, and these results could be a psychophysical correlate
of the bias we observed in our fMRI data.

Organization of color processing in early
human cortical areas

While significant classifier performance indicates repre-
sentations of non-cardinal colors, differences in classifier

Figure 4. Univariate and Multivariate Classifier Performance
across subjects. Mean univariate and multivariate classifier accu-
racy across subjects for each visual area are plotted in light gray
and dark blue bars, respectively. Error bars indicate T1 standard
deviation of the population of classification accuracy estimates
generated using the permutation analysis. Chance performance
(50%) is shown with the dashed line. In all visual areas except MT+,
the multivariate classification accuracy was significantly (p G 0.01,
one-tailed permutation test) above the chance performance pre-
dicted by the permutation analysis, while the univariate classifica-
tion accuracy was significantly above chance (p G 0.05, one-tailed
permutation test) in all areas. The multivariate pattern classifier
generally outperformed the univariate classifier, and this difference
was significant (p G 0.01, two-tailed permutation test) for areas V1
and V2 when compared with the differences predicted by chance
according to the permutation analysis. In areas VO and MT+, the
univariate classifier outperformed the multivariate classifier, but
this difference was not significant.
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performance between areas are difficult to interpret.
Brouwer and Heeger (2009) found highest classifier
performance in V1, yet their principal components analysis
suggested that the representation of color in hV4 and VO
more closely matches our perceptual experience. Classifier
performance depends not only on the presence of relevant
information (here, non-cardinal representations of color)
within an area, but also on the accessibility of this
information at the coarse spatial scale of our functional
measurements.
For areas V1 and V2, multivariate classifiers signifi-

cantly outperformed univariate classifiers, showing that
there was stimulus related information in the pattern of
activity. In macaque V1 and V2 there are orderly maps of
hue selectivity (including both cardinal and non-cardinal
colors) across the surface of the cortex (Xiao, Casti, Xiao,
& Kaplan, 2007; Xiao, Wang, & Felleman, 2003). If
similar maps exist early in human visual cortex, their
existence may increase the chance of biased sampling of
chromatic preferences across voxels. The size of these hue
maps, which each represent a large spectrum of hues, is
only around 200 2m across the surface of the cortex in
macaque V1, with individual maps separated by around
400 2m (Xiao et al., 2007). If maps of approximately the
same size exist in human V1, a single voxel would contain
approximately 6 hue maps. It is unlikely that a single
voxel would sample neurons whose preference included
only a narrow range of hues, but it could be that this map
arrangement would make it more likely for biases between
voxels to arise. Furthermore, in macaque, the hue maps in
V2 are on average 2 to 2.5 times longer than the hue maps
in V1 (Xiao et al., 2007). Larger maps with the same
voxel resolution should increase the likelihood of biased
sampling of hue maps, and increase the magnitude of the
biases, which could underlie the tendency in our results
for classifiers in V2 to outperform classifiers in V1.
Alternatively, it is possible that the stimulus related

information in the pattern of activity is not due to
qualitatively different patterns of response for lime-magenta
and orange-cyan but instead a single pattern of visually
responsive voxels which respond more strongly in the lime-
magenta case. Since there is a univariate bias, the multi-
variate classifier could potentially be learning the difference
between a strong signal in noise and a weaker version of the
same signal (also in noise). The increased performance of
the multivariate versus univariate classifiers might then be
based purely on the ability of the multivariate classifiers to
ascribe more to weight individual voxels on the basis of their
signal-to-noise ratio. Further empirical and theoretical work
will be required before it is possible to discriminate with
certainty between these alternatives.

Response of dorsal visual areas

Poor classifier performance in MT+ is consistent with
the classifier results of Brouwer and Heeger (2009), as

well as evidence from MT of rhesus monkey (Britten,
Shadlen, Newsome, & Movshon, 1992; Dubner & Zeki,
1971) and human MT+ (Huk, Dougherty, & Heeger,
2002; Tootell et al., 1995; Zeki et al., 1991) that this area
is not generally selective for the color of surfaces and is
less responsive to chromatic than achromatic stimuli
(Gegenfurtner et al., 1994; Liu & Wandell, 2005; Wandell
et al., 1999), although sensitivity to chromatic motion
(Barberini, Cohen, Wandell, & Newsome, 2005; Wandell
et al., 1999) has been reported. Likewise, the reduced
classifier performance in V3A/B with respect to V1, V2
and V3 may reflect the general preference of this dorsal
area for motion (Tootell et al., 1997), and its reduced
responsivity to chromatically defined stimuli (Liu &
Wandell, 2005). Nevertheless, for each subject, MT+ had
fewer voxels than any other area we defined, which alone
may account for decreased classifier performance.

Response of ventral visual areas

Areas hV4 and VO are often thought to be specialized
for the processing of color. In macaque V4 evidence from
both single unit recordings (Zeki, 1983) and from neuro-
imaging (Conway & Tsao, 2006) implicate this area as a
‘color center’. In human, there is converging evidence
from patients with cerebral achromatopsia (Zeki, 1990)
and from PET (Lueck et al., 1989) and fMRI (Bartels &
Zeki, 2000; Hadjikhani, Liu, Dale, Cavanagh, & Tootell,
1998; Liu & Wandell, 2005; McKeefry & Zeki, 1997;
Mullen, Dumoulin, McMahon, de Zubicaray, & Hess,
2007; Wade, Brewer, Rieger, & Wandell, 2002) neuro-
imaging studies that both hV4 and VO are involved in color
vision. Additionally, there is evidence that the response
properties of VO match color perception in showing
weaker responses to high than to low temporal frequencies
(Jiang, Zhou, & He, 2007; Liu & Wandell, 2005), while
V1 does not. It therefore might be expected that classifier
performance would be greatest in these areas, but this was
not the case for our stimuli, or for more perceptually
relevant hues (Brouwer & Heeger, 2009). We consider
five possible reasons for this.
First, our definitions of hV4 and VO may not include

the region of ventral visual cortex that is specialized for
color processing; Hadjikhani et al. (1998) reported color
selectivity in area V8, but not hV4. We think this account
of our results is unlikely because our definition of hV4,
corresponding to that of Wandell et al. (2007), would
include part of the V8 described by Hadjikhani et al.
(1998), which showed color selectivity, with the remainder
of their V8 corresponding to our VO.
Second, areas hV4 and VO may be more susceptible to

task specific demands than other areas. We both asked
subjects not to attend to the stimuli and required them to
engage with a task at fixation. By diverting attention from
the experimental stimulus we aimed to avoid artifactual
classifier performance that was based not on differences in
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the stimulus-driven response but on differences in attention
between the two conditions. However, when attention is
directed to a task unrelated to the stimulus, the stimulus-
driven BOLD response is suppressed, and this suppression
increases with the attentional load of the task (Rees, Frith,
& Lavie, 1997; Schwartz et al., 2005). Single-unit record-
ings in macaque and fMRI in humans show that V4 and
hV4 show greater attentional modulation than earlier
visual areas (Hansen, Kay, & Gallant, 2007; Reynolds &
Chelazzi, 2004; Schwartz et al., 2005).
Third, reduced performance of multivariate classifiers in

hV4 and VO may result if our voxel size (1.5 mm each
side) resulted in biases when sampling neural representa-
tions of color in V1 and V2, but not hV4 or VO. The spatial
arrangement of chromatic preferences may be either less
ordered, ordered in a different way, or ordered on a smaller
spatial scale than in the earlier visual areas.
Fourth, any nonlinearity in the signal which differs

between areas may enhance or reduce the stimulus
discriminability in the BOLD response. For example, the
contrast response of VO to L–M and S–(L + M) mod-
ulating stimuli is more nonlinear than V1 (Liu & Wandell,
2005). It is not clear how such nonlinearities should affect
classifier performance, but it is possible that the reduced
classifier performance in ventral areas were due to such
nonlinearities.
Finally, there may be increased noise in our imaging

results for these areas, which are typically located further
from the surface of the head than the earlier visual areas
and dorsal areas, and near the transverse sinus, which can
cause imaging artifacts (Winawer, Horiguchi, Sayres,
Amano, & Wandell, in press). We think it likely that the
reduced performance of the classifiers in hV4 and VO
reflects some combination of the impact of attention,
nonlinearities, imaging noise and (for multivariate classi-
fiers) the spatial arrangement of color processing within
these areas, rather than implying their diminished selec-
tivity for color.

Limitations of this study

All these conclusions are based on the assumption that
our stimuli induced responses in sub-cortical pathways
that are indistinguishable when considering the responses
of each pathway independently. We consider a number of
reasons why this assumption may be invalid.
Macular pigmentation selectively attenuates shorter

wavelengths in the central two degrees of the visual field
(Hammond, Wooten, & Snodderly, 1997; Wyszecki &
Stiles, 1967). When defining our stimuli we used the
Stockman and Sharpe (2000) 2 degree cone spectral
sensitivities, which take into account the impact of
macular pigmentation. Since macular pigmentation does
not extend beyond the central 2 degrees of visual field
(Hammond et al., 1997; Stringham, Hammond, Wooten,
& Snodderly, 2006), it is possible that for the region

peripheral to this, our stimuli were no longer balanced for
responses they induce in the sub-cortical pathways. To
rule out this potential artifact, we repeated the classifier
analysis, limiting the voxels included in the classifier to
those within 2 degrees visual angle from fixation and thus
excluding any voxels which respond to an area of visual
field for which the stimuli may not have been balanced.
With this analysis, we found classifier performance was
reduced, but remained significantly above chance in all
areas except MT+ (data not shown). This rules out the
possibility that classifier performance in the original
analysis was based on artifacts in the stimuli caused by
macular pigmentation.
It is important also to emphasize the robustness of our

conclusions to any inaccuracies in the determination of
subjective equiluminance for each subject. For example,
let us consider the situation if there was a 1% artifactual
modulation in the lime-magenta blocks and no artifact in
orange-cyan blocks. The 25% luminance modulation was
added in opposite phases for different lime-magenta
blocks, meaning that the effect of the luminance artifact
would be to increase effective luminance contrast to 26%
in half of the lime-magenta blocks and decrease it to 24% in
the other half. For such a bidirectional effect to introduce a
bias in the univariate response between lime-magenta and
orange-cyan blocks, the contrast response function in the
vicinity of 25% luminance contrast would have to be highly
non-linear. Furthermore, any such bias would be unlikely to
show the consistency between subjects observed here. In
terms of the multivariate analysis, a classifier would have to
learn a disjunctive discrimination between (24 or 26%) vs.
(25%) modulation in luminance in order to be able to
classify the stimuli based on luminance alone. Our use of
linear classifiers minimizes the possibility that luminance
artifacts were used as a cue to discrimination.
More fundamentally, it could be that the classic model

of two chromatically opponent sub-cortical channels is
insufficient to capture the selectivity of all neurons in the
lateral geniculate nucleus (LGN). The majority of observed
LGN responses can be accounted for by the classic model,
but some evidence suggests that the chromatic responses of
the LGN may not be fully described by the two channels. It
is difficult to investigate physiological correlates of the
higher-order color mechanisms in the LGN, since these
mechanisms have primarily been revealed by psycho-
physical habituation (Krauskopf et al., 1986), and there is
little or no habituation of cells in the LGN, yet these cells
may contribute to the color tuning of the adaptable cortical
cells (Tailby, Solomon, Dhruv, & Lennie, 2008a). Signals
tuned to color directions away from the two opponent
mechanisms have also been proposed (Webster & Mollon,
1991, 1994; Zaidi & Shapiro, 1993) that could theoret-
ically be inputs to cortical areas. Finally Tailby, Solomon,
and Lennie (2008b) recently reported that in macaque
LGN, a subset of neurons responded to modulations along
both the S–(L + M) and L–M axes. Our present study does
not address the question of whether the model of two
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chromatically opponent sub-cortical channels is sufficient
to describe the coding of color by the LGN. We plan to
investigate this possibility further in future investigations
using human fMRI.

Appendix A

Multivariate classifier performance as a
function of the number of voxels

For each subject, the classifier analysis was repeated for
increasing numbers of voxels from each area. Figure A1
shows multivariate classifier performance as an increasing
number of voxels were included in the classifier, on a

semilogarithmic scale. It also shows the best fitting curve
(see Equation 1), from which the limit was reported as the
classifier performance in Figure 4, or the mean classifier
performance in cases where the curve did not fit the data.

Appendix B

Generalization of classification across
different luminance–color pairings

Our main analyses, grouping lime-magenta and orange-
cyan blocks of different luminance pairings, show that
the classifier generalizes across luminance levels. This is

Figure A1. Classifier Performance as a function of the number of voxels included in the classifier, for each area and each subject. In each
plot the filled blue line plots the classifier performance, and the filled red line plots the best-fitting exponential growth function, given by
Equation 1. Where the exponential growth function fitted the data, the limit of this function was taken as the classifier performance in that
area for that subject; the number of voxels taken to reach this limit is given by the red number on these plots. Where the exponential
growth function did not fit the data (usually when performance was low), the mean was taken as the classifier performance, which is
plotted as a dashed red line.
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because both training and test data contain an equal number
of the two phases of luminance–color relations so the
classifier has to generalize across different luminance levels
to learn the stimuli. If the classifier can learn this more
general rule, it at first sight seems reasonable to test
whether it can generalize from one level to the other.
However, there is a subtle but important point to make

here. If we train on one luminance level and test on the
other, the classifier may learn a different rule than lime-
magenta vs. orange-cyan. If the classifier is trained on
dark lime-light magenta vs. dark orange-light cyan, the
classifier could learn to separate the training data as dark
green-light red vs. dark red-light green. If this different
rule were learned by the classifier then when tested with
light lime-dark magenta vs. light orange-dark cyan it
would give the opposite result to learning the non-cardinal
color modulation. Thus successful classification would
provide evidence in support of the classifier learning the
non-cardinal color modulation, and argue against the
notion that the original classifier performance could have
been based on an artifact. But a negative result neither
supports nor excludes the possibility that classifier per-
formance was due to a luminance artifact. In short, in the
original analysis any small luminance artifact could have
worked in favor of classifier performance but in this new
analysis there is a 25% contrast luminance modulation
working against classifier performance.

The results of this analysis are shown in Figure B1. We
found that in area MT+, classification performance was
significantly below chance (p G 0.01, two-tailed t-test)
across subjects, and for individual CC in areas V1, V2, V3
and V3A/B (p G 0.01, permutation test). Below chance
performance is consistent with the classifier being sig-
nificantly good at learning a decision rule based on the
pairing of luminance and one of the cardinal modulations
(for example, successfully learning to separate the data as
dark green-light red vs. dark red-light green). This below
chance performance neither supports nor excludes the
possibility that the original classifier performance was
based on a luminance artifact.
For subjects SM, DM and EG classification performance

was significantly (p G 0.05, permutation test) above chance
for V1 and V2, with SM and DM also significantly (p G
0.05, permutation test) above chance in area V3. The fact
that classifier performance is significantly above chance
for some areas in some subjects gives evidence that in
these cases the original classifier performance could not
have been based on a luminance artifact.
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