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Object perception involves a range of visual and cognitive processes, and is known to include both a feedfoward
flow of information from early visual cortical areas to higher cortical areas, along with feedback from areas such
as prefrontal cortex. Previous studies have found that low and high spatial frequency information regarding ob-
ject identity may be processed over different timescales. Here we used the high temporal resolution ofmagneto-
encephalography (MEG) combined with multivariate pattern analysis to measure information specifically
related to object identity in peri-frontal and peri-occipital areas. Using stimuli closely matched in their low-
level visual content, we found that activity in peri-occipital cortex could be used to decode object identity from
~80 ms post stimulus onset, and activity in peri-frontal cortex could also be used to decode object identity
from a later time (~265 ms post stimulus onset). Low spatial frequency information related to object identity
was present in theMEG signal at an earlier time than high spatial frequency information for peri-occipital cortex,
but not for peri-frontal cortex.We additionally usedGranger causality analysis to compare feedforward and feed-
back influences on representational content, and found evidence of both an early feedfoward flow and later feed-
back flow of information related to object identity. We discuss our findings in relation to existing theories of
object processing and propose how the methods we use here could be used to address further questions of the
neural substrates underlying object perception.

© 2016 Elsevier Inc. All rights reserved.
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Visual object recognition and identification is an important task in
everyday life, and the speed and accuracy with which we can identify
objects are consistent with the visual system devoting considerable re-
sources to this ecologically relevant process. Object perception involves
a range of visual and cognitive processes, including a feedfoward flow of
information along the ‘ventral stream’ of visual cortex (for example, see
Tanaka, 1996; Grill-Spector et al., 2001), and also feedback from frontal
and parietal areas such as prefrontal cortex. However, theway in which
these areas interact to contribute to object perception remains unclear
despite a growing experimental literature on the topic.

A range of theories of object perception (Bullier, 2001; Bar, 2003;
Peyrin et al., 2010; Tapia and Breitmeyer, 2011; Horr et al., 2014;
Hochstein and Ahissar, 2002) have hypothesized that very early top-
down feedback, around 100–150 ms after stimulus onset (Bar et al.,
2006), carries content regarding object identity from prefrontal cortex
to the traditional ‘bottom-up’ dorsal and ventral visual pathways.
These theories are based on results such as the speed with which
humans can correctly respond to simple object categorisation tasks

(for example, 120 ms after stimulus onset, Kirchner and Thorpe,
2006), combined with reports that early activity (130–150 ms after
stimulus onset) from prefrontal sites can vary with object recognition
(Thorpe et al., 1996; Bar et al., 2006).

The relative timing of feedforward and feedback flows of informa-
tion in object perception has been suggested to depend on the spatial
frequency content of the image, with the earliest information about ob-
ject information coming from low spatial frequency (low-pass) image
components (Bar et al., 2006; Chaumon et al., 2014; Fintzi and Mahon,
2014). This is broadly consistent with psychophysical results implying
that low spatial frequency image components are processed prior to
high spatial frequency components (Hughes et al., 1996; Parker et al.,
1992, 1997; Schyns and Oliva, 1994; Neri, 2011). However, these effects
are likely contingent on the relative usefulness of low and high spatial
frequencies to the participant's task (De Gardelle and Kouider, 2010;
Stein et al., 2014; Patai et al., 2013), which challenges the notion of
clear segregation between rapidly propagated low-pass signals and
slower ‘High-pass’ signals. Furthermore, neuroimaging studies provid-
ing evidence for differential processing of high and low spatial frequen-
cy stimuli in object processing (Bar et al., 2006; Chaumon et al., 2014;
Fintzi and Mahon, 2014) have used stimuli varying in total spatial fre-
quency content, and have not equated the stimulus types for low-level
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properties such as overall luminance and contrast. This leaves open the
possibility that their differential effects may be due to different image
statistics across conditions.

Here we devised a new methodology to explore the timing of
feedforward and feedback flows of object-related information based
on magnetoencephalography (MEG) recordings. We applied a time re-
solved multivariate pattern classification analysis to magnetoencepha-
lography (MEG) data (Carlson et al., 2011, 2013; Isik et al., 2014) and
compared the object-related information in peri-occipital and peri-
frontal areas at different time points. Using a novel extension of Granger
causality analysis, we tested for evidence that the representational
structure of object-related information in frontal regions predicted the
representational structure of later responses in occipital areas.

Using this method, we compared the brain's processing of low and
high spatial frequency object-related information. We used stimuli
that had the same power at each spatial frequency in their Fourier am-
plitude spectra, and the same overall contrast, varying only the ‘diag-
nostic’ spatial frequencies (De Gardelle and Kouider, 2010). Stimuli in
our ‘Low-pass’ condition had object signal in the low spatial frequencies
while high spatial frequencies were phase-randomized, while for the
‘High-pass’ condition this was reversed.

Methods

Participants

Twelve participants (nine female, ten naïve to the purposes of the
study) took part in an initial psychophysical experiment used to cali-
brate the visual images for their low and high spatial frequency content.
Nine participants (five female, eight naïve to the purposes of the study)
completed the second psychophysical experiment and the MEG experi-
ment. All had normal or corrected to normal vision, and naïve participants
were paid for their time. All participant recruitment and experiments
were conducted with the approval of the Macquarie University Human
Research Ethics Committee.

Visual stimuli

Visual stimuli were generated and presented using Matlab (version
R2013a) and routines from Psychtoolbox (Brainard, 1997; Pelli, 1997).
In all experiments we used the same set of 24 images, which were se-
lected from a set of 92 supplied by Nikolaus Kriegeskorte (described
in Kriegeskorte et al., 2008). All images were segmented real world ob-
jects on a gray background. In both psychophysical and imaging exper-
iments, participants judged whether each presented object was smaller
or larger than a shoebox.We chose the 24 images such that for both the
‘smaller than a shoebox’ and ‘larger than a shoebox’ groups there were
six animate and six inanimate objects.

Each image was 175 × 175 pixels, and subtended 15 degrees visual
angle (dva) in each experiment. We converted each original color
image to grayscale by setting the RGB coordinate of each pixel to the av-
erage of the R, G, and B coordinates of that pixel in the original image. In
order to equate all images for their power at each orientation and spatial
frequency, we set the amplitude matrix of each image to the average
amplitude matrix of all images. To find the average amplitude matrix
across the 24 images, we performed a two-dimensional discrete Fourier
transform of each image, which yielded an amplitude and phase matrix
for each image, and then for each point in amplitudematrixwe used the
average amplitude across the 24 images. We used the same amplitude
matrix for every stimulus image, varying only the phase matrix that
was used in the two-dimensional inverse discrete Fourier transform to
generate a given stimulus.

The phase matrix of each stimulus was derived from one of the 24
images, with varying amounts of phase randomization introduced to
the phase matrix. The four stimulus conditions, along with the pattern
of phase randomization in each case, are illustrated in Fig. 1. Phase

randomizationwas introduced to oneormore of three spatial frequency
bands: low (b 0.90 cycles/dva), medium (≥ 0.90 cycles/dva and ≤ 1.03
cycles/dva) and high (N 1.03 cycles/dva). In the ‘Low-pass’ condition,
the phase of spatial frequencies in the high andmediumbandswas ran-
domized, and in the ‘High-pass’ condition the low and medium bands
were randomized. In the ‘Strong signal’ and ‘Weak signal’ stimulus con-
ditions, the phase of all spatial frequencies in themediumbandwas ran-
domized, along with varying proportions of the frequencies in the low
and high bands, as detailed below.

Since every image contained at least some phase randomization, we
were able to repeat the randomization process and generate different
versions of the same image with the same object signal, such that a
new image was used for every trial. Also, since all images had the
same amplitude matrix, the objects could not be distinguished when
phase randomization was complete across all spatial frequencies. This
ensured that objects could not be identified based on the orientation/
spatial frequency profile of the randomized images.

Psychophysical experiments

We conducted two psychophysical experiments in order tomeasure
the detectability of the objects in the different conditions. Stimuli were
generated and displayed on a Dell OptiPlex 9010 desktop computer
driving an AMD Radeon HD 7570 graphics card to draw stimuli to a
60 × 33 cm Samsung SyncMaster SA950 Full HD 3D LED monitor,
refreshed at 120 Hz. Experiments took place in a darkened room and
the monitor was viewed from a distance of .64 m.

In the first experiment, we included only the ‘Low-pass’ and ‘High-
pass’ conditions, and measured the detectability of each object in these
two conditions as a function of the amount of phase randomization. At
the start of each session the participant chose the keys on a keyboard
they would use for their responses (‘smaller’ and ‘larger’ than a shoebox)
and after these responses the experiment commenced. Each trial began
with a central fixation marker (a small gray cross) that was displayed
on a black background for 250 ms, after which the stimulus image was
displayed on a black background for 500 ms before being replaced by
the fixation marker. Participants were given an unlimited amount of
time to respond. Following the participant's response, theywould receive
feedback on their decision (displayed as ‘correct’ in green, or ‘incorrect’ in
red) for 500 ms, and then the next trial would commence.

Each of the 12 participants completed 8 sessions of 15–20 minutes
each, consisting either of only ‘High-pass’ or only ‘Low-pass’ stimuli,
and including either the first 12 or the second 12 images in the set.
The order of sessions was counterbalanced across participants. Each
session included 12 randomly interleaved adaptive psychophysical
staircases (one for each of the 12 images) (Kontsevich and Tyler,
1999) consisting of 30 trials each. The adaptive staircase set the degree
of phase randomization on each trial in order to reliably estimate the de-
tection threshold of each image (the point at which the participant was
75% correct in identifyingwhether the object was smaller or larger than
a shoebox). At the completion of the 8 sessions, we had two estimates of
detection threshold of each image in both the ‘Low-pass’ and ‘High-pass’
conditions. Results and stimuli from the first psychophysics experiment
are included in the Supplementary Material.

The average detection thresholds across participants were used to
generate low and high-pass versions of each object thatwere of approx-
imately equal detectability. We found the maximum possible signal for
which the signal in the low and high-pass images were equal multiples
of the average detection threshold, and used these maximum matched
signal values to define the ‘Low-pass’ condition and the ‘High-pass’
condition of the MEG experiment. Images in the ‘Strong signal’ condi-
tion were defined by setting the signal in both the low and high spatial
frequency bands to these maximum matched values.

Finally, in the second psychophysical experiment, we calibrated
the signal level in the ‘Weak signal’ condition individually for each of
the nine participants who went on to complete the MEG experiment.
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For each object, the ratio of signal in the low and high spatial frequency
bands was fixed to the values determined in first experiment, and the
overall signal in a given image was varied between 0 (totally random-
ized) and maximum (the ‘Strong signal’ condition). As before, we used
interleaved adaptive psychophysical staircases, in this case estimating
the detectability of each object as a function of the combined low and
high spatial frequency signal amplitude. For each observer and each ob-
ject the psychometric function that bestfit these datawas used to deter-
mine the signal level corresponding to 85% correct, and these images
comprised the ‘Weak signal’ condition in the MEG experiment.

MEG experimental design

MEG data were collected with a whole-head MEG system (Model
PQ1160R-N2; KIT, Kanazawa, Japan) consisting of 160 coaxial first-
order gradiometers with a 50 mm baseline (Kado et al., 1999; Uehara
et al., 2003). Prior to MEGmeasurements, five marker coils were placed
on the participant's head and their positions and the participant's
head shape were measured with a pen digitizer (Polhemus Fastrack,
Colchester, VT, USA).

Each participant's MEG data were collected in a single session of ap-
proximately 90 minutes, and raw MEG data were recorded at 1000 Hz.
While participants were lying in the scanner, stimuli were projected
through a customized window by an InFocus IN5108 LCD back projec-
tion system (InFocus, Portland, Oregon, USA) located outside the Fara-
day shield, onto a screen above the participant that was viewed from
a distance of 113 cm. On each trial, the timing was the same as that
for the psychophysical experiments except for the inclusion of variable
inter-trial interval. Each trial commenced with 250 ms of a fixation
marker, after which the stimulus was presented for 500 ms then re-
placed with the fixation marker. Participants indicated their response
using a Fiber Optic Response Pad (fORP, Current Designs, Philadelphia,
PA, USA) with the Bimanual 4-Button Fiber Optic Response Pad. Partic-
ipants were then provided with feedback and then the next trial

commenced after an inter-trial interval that varied randomly between
900 ms and 1200 ms to avoid expectancy effects.

The MEG session was divided into six blocks, and the response
buttons corresponding to ‘smaller’ and ‘larger’ than a shoebox were
alternated at the beginning of each block. Each of the 24 objects
was presented a total of 96 times each, 24 times in each of the four
stimulus conditions (‘Low-pass’, ‘High-pass’, ‘Strong signal’ and
‘Weak signal’), giving a total of 2304 trials per session. The order of
presentation of each of these 2304 trials was balanced so that each
object was equally likely to be preceded by and followed by every
object, and each of the four conditions was equally likely to be pre-
ceded by and followed by every condition. This counterbalanced
order was split into six blocks of 384 trials each, to which the last
trial of the preceding block was added to the beginning, and the
first trial of the next block was added to the end. Data from these
first and last trials were discarded.

For the MEG experiments, the average response accuracy was con-
sistent with the object related task being easiest in the ‘Strong signal’
condition (97.65% correct), hardest in the ‘Weak signal’ condition
(81.81%), and intermediate in the ‘Low-pass’ (96.14%) and ‘High-pass’
(89.22%) conditions. A one-way analysis of variance (ANOVA) revealed
a significant main effect of condition on accuracy (F(3,32) = 16.07,
p b 0.01). Post-hoc comparisonswith Dunn-Sidak adjustment formulti-
ple comparisons showed that accuracy was significantly lower in the
‘Weak signal’ condition than in any other condition (p b 0.05), and sig-
nificantly higher in the ‘Strong signal’ condition than in the ‘High-pass’
condition (p b 0.05). Accuracy was higher in the ‘Low-pass’ condition
than in the ‘High-pass’ condition, but this difference was not significant
(p N 0.05). Reaction times followed the same trend as the accuracy data,
with slightly shorter median reaction times when accuracy was higher
(‘Strong signal’: 1.71 s; ‘Weak signal’: 1.79 s; ‘Low-pass’: 1.73 s; ‘High-
pass’: 1.77 s) but a one-way ANOVA on the logarithm of the reaction
times did not reveal a significant effect of condition of reaction time
(F(3,32) = 1.26, p = 0.31).

Fig. 1. An example stimulus image (of an open hand) in each of the four conditions. For each image condition the example stimulus is accompanied by an inset (not part of the stimulus)
which schematically illustrates the phase randomization that was applied to the Fourier amplitude spectra of the original image. Based on the results of an initial psychophysical
experiment, the degree of phase randomization in the high and low spatial frequency bands was matched so that images in the ‘High-pass’ and ‘Low-pass’ conditions were equally
identifiable. For 23 of 24 images, the detection threshold for the ‘High-pass’ image was lower than for the ‘Low-pass’ image, so for each of these images the ‘High-pass’ condition had a
low amount of phase randomization in the high spatial frequency band in order to equate their detectability with the ‘Low-pass’ condition. For the single image where the detection
threshold for the ‘Low-pass’ image was lower than for the ‘High-pass’ image, this was reversed.
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MEG data analysis: Data reduction

Raw MEG data were imported into Matlab (version R2013a) and
preprocessed with notch filtering (to remove 50 Hz modulation). Data
corresponding to each trial were extracted by taking the data from
−100 ms to +1200 ms relative to stimulus onset. In order to compare
theMEG signal in frontal and peri-occipital sensors, for each participant
we created three data sets, the first included data from all 160 sensors,
and the second and third data sets included data from the frontal and
peri-occipital sensors. Using the measured location of each sensor, we
found the most anterior and the most posterior sensor for each partici-
pant and the distance between them (d). We then defined the frontal
sensors as those within d/4 of the most frontal sensor, and the peri-
occipital sensors as those within d/4 of the most posterior sensor.

All subsequent analyses were carried out for each of the three data
sets described above. Firstly, each data set, comprising 1300 ms of
data for each of 2304 trials and up to 160 sensors, was reduced using
principal components analysis. Data from the first n components that
accounted for 99% of the variance were retained; data from remaining
components were discarded. Following this data reduction, the
1000Hz data were downsampled to 200 Hz using theMatlab ‘decimate’
function.

MEG data analysis: Classifier analyses

In order to measure the similarity/dissimilarity of brain responses to
the different objects in different stimulus conditions, we used linear dis-
criminant analysis (LDA) to examine the extent to which brain activity
could be used to predict the stimulus on any given trial. We included
only those trials where participants correctly identified the object as
smaller or larger than a shoebox. For each possible pair of the 24 objects
we trained a classifier to discriminate between the two objects, then
tested the classifier on separate data. Initially, we included data from
all four conditions, and tested the classification accuracy using 10-fold
cross-validation. The classification rule was learnt using 90% of trials,
and then the accuracy of this rule was tested on the remaining 10% of
trials. This process was repeated for each of 10 partitions of the data,
such that all data were included in the test set once, and no data were
ever used in both the training and test set (leave-one-out train-and-
test). In order to measure how classification accuracy evolved over
time we repeated this process at each time point in the 1300 ms win-
dow and at each time point we averaged classifier accuracy across all
possible pairs of the 24 objects. The leave-one-out train-and-test classi-
fication analysis was then repeated for each stimulus condition sepa-
rately, resulting in a separate time course of classifier accuracy for
each of the ‘Strong signal’, ‘Weak signal’, ‘Low-pass’ and ‘High-pass’
conditions.

We also tested cross-condition classification accuracy by training the
classifier on data from one stimulus condition (e.g. ‘Strong signal’) and
testing on data from every other condition. We performed this analysis
to test the similarity of the information that was used by the classifier in
each condition. Since by definition the training and test data did not over-
lap, we used all training data to learn a single classification rule that was
applied to data fromeach trial of the test data in the remaining conditions.

In addition to training and testing classifiers to discriminate each
pair of objects (object identity), we also grouped objects according to
different category classes. We divided the objects according to animacy
(animate versus inanimate) and size (smaller versus larger than a
shoebox), collapsing across stimulus conditions, and in both cases
trained and tested classification accuracy using 10-fold cross-
validation, as described above. In both cases (animacy and size), there
were equal numbers of objects on either side of the category boundary,
and these two category boundaries were orthogonal. We also devised a
third, pseudo-random ‘category’ boundary, which divided the set of 24
objects into two groups with equal numbers of animate and inanimate
objects, and objects that are smaller and larger than a shoebox. The

classifier performance based on this pseudo-random category provided
a baseline against which to compare the classifiers based onmeaningful
object categories. At each time point, we performed a paired t-test com-
paring the between-subject classifier performance for the meaningful
category (e.g. animacy) with the pseudo-random category. In both
cases we used a false discovery rate (FDR) correction to control formul-
tiple comparisons across time points (Genovese et al., 2002).

For each classification performance time coursewherewe report the
onset of above chance classifier performance, we tested whether the
between-subject mean (n = 9) was above chance using a one-tailed
t-test, and applied an FDR correction to control for multiple compari-
sons across time points. We defined the onset of above chance classifi-
cation performance as the start of the first 10 consecutive time points
(50 ms total) for which classifier performance was above chance
(p b 0.05). To estimate the 95% confidence intervals of these onsets,
we created 1000 bootstraps of the data, each time randomly sampling
the individual subject means (with replacement) a total of nine times
(corresponding to our nine subjects). After applying the same statistical
testing to estimate the onset of above-chance classifier performance for
each bootstrapped sample, we defined the 95% confidence intervals as
the lower and upper limits of the central 95% of these onset estimates.

MEG data analysis: Classifier accuracy curve fitting

In order to compare the time course of classier accuracy across loca-
tion (peri-frontal versus peri-occipital), participant, and stimulus condi-
tion, we reduced the time course of classifier accuracy in each case to
the accuracy at the ‘early’ and ‘late’ peaks, by fitting a simple curve to
the data. For each plot of classifier accuracy over time we used the
Matlab ‘nlinfit’ function to find the best-fitting model (M(t)) of the
curve.

M tð Þ ¼ a g t;α1;β1ð Þ þ b g t þ α1;α2;β2ð Þð Þ½ & ð1Þ

The model fit as a function of time (M(t)) is a weighted sum of two
gamma probability density functions (g(t)), which are defined as

g t;α;βð Þ ¼ βαt α−1ð Þe−βt
h i

=Γ αð Þwhere αN0 and βN0 ð2Þ

the free parameters are a and b (scalars), and the offset (α1 andα2) and
dispersion (β1 and β2) of the peaks of the two gamma probability den-
sity functions.

Using the parameters ofM(t) that best fit the average classifier accu-
racy based on the entire data set (shown for an example participant in
Fig. 3A) we constrained all other model fits for that participant so that
each of the offset parameters (α1 and α2) was within 10 ms of the fit
based on the entire data set. This ensured that we could sensibly reduce
the data to the location and amplitude of their ‘early’ and ‘late’ peaks,
and compare across conditions.

Since the fitted curve is always greater than zero, where classifica-
tion performance is at chance this curve-fitting method will identify
local positive peaks in the noisy time course of classification perfor-
mance. To find a baseline based on chance performance against which
to compare the measured peaks, for each participant in each condition
we took the time course of classifier accuracy from before stimulus
onset (−100 to 0 ms), fit the same model (M(t)) to this noise data,
and took the maximum peak of this fitted model. Across participants,
the average baseline estimate was d’ = 0.045, with standard error
0.003. In results Figs. 4 and 5, the dotted horizontal lines indicate this
baseline.

MEG data analysis: Granger analysis of feedforward/feedback
information flows

We summarized the classifier performance for each pair of images
into dissimilarity matrices (DSMs) for each time point, for both peri-
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frontal and peri-occipital sensors. Each DSM was a 24 × 24 matrix,
where each cell in the DSM was defined as the classification accuracy
for a single pair of images. The diagonal axis of thesematrices was nom-
inally zeros, and the matrix is by definition symmetric about the diago-
nal axis, so for all correlation values calculated below we included only
the triangular part of the matrix above the diagonal.

These matrices capture more about the representation of object in-
formation than the average classification accuracy, and similar analyses
have been applied previously to fMRI and electrophysiology data
to compare representations of object information across brain areas,
and across species (Kriegeskorte et al., 2008), and have also been
applied toMEG data to compare the evolution of object representations
over time (Carlson et al., 2013). Here we used this measure of object
representational space to test for evidence that object-related informa-
tion was passed from peri-occipital to peri-frontal brain regions
(feedforward) and from peri-frontal to peri-occipital regions
(feedback).

Specifically, we tested for Granger causal relationships between
multivariate measures of object-related information (the DSMs) from
the peri-frontal and peri-occipital sensors. The logic of Granger causality
is that time series X ‘Granger causes’ time series Y if X contains informa-
tion that helps predict the future of Y better than information in the past
of Y alone (for a recent review on the application of Granger causality to
neuroscience, see Friston et al., 2013). Since we were particularly inter-
ested in the evolution of these relationships over time we performed a
sliding-window analysis of a simplified (special case) of Granger causal-
ity, using the partial correlations in Eqs. (3) and (4) to define
‘Feedforward’ (FF) and ‘Feedback’ (FB) information flows at each time
point (t).

FF tð Þ ¼ ρDSM front;tð ÞDSM back;t−125ð Þ:DSM front;t−125ð Þ ð3Þ

FB tð Þ ¼ ρDSM back;tð ÞDSM front;t−125ð Þ:DSM back;t−125ð Þ ð4Þ

where DSM(loc,t) is the DSM based on the sensors at location loc at time t
ms post stimulus onset, and DSM(loc,t−125) is the DSM based on the
sensors at location loc, averaged across all time points from t-150 ms
to t-100ms post stimulus onset. A schematic illustration of this analysis
is found in Fig. 6. In a review of electrophysiological estimates of visual
response latencies, Lamme and Roelfsema (2000) report that for ma-
caque, the mean visual response latencies in V1 and prefrontal cortex
are 72 ms and 141 ms, respectively, although these response latencies
will be slower for humans, due to their larger head size. We chose
100 ms as a generous estimate of the time taken for responses to be
propagated from occipital to prefrontal areas and vice versa, and aver-
aged across 100 ms to 150 ms so that our analysis was not dependent
on an exact estimate of these propagation times.

We report the results of this analysis in terms of the difference be-
tween the feedforward and feedback information flows (FF-FB). To as-
sess whether this difference was significantly above or below chance,
we generated a null distribution of this difference at every time point
by performing the same analysis on 1000 bootstraps of data from each
subject where the exemplar labels were randomly shuffled for each of
the DSMs used in Eqs. (3) and (4).

Results

Using MEG, we measured participant's brain responses while they
viewed a series of objects and made a simple judgment about the
object's identity. Each object was presented in each of four stimulus
conditions (described above, and illustrated in Fig. 1). Two of the stim-
ulus conditions had signal in both the high and low spatial frequency
bands, with either a low level of noise (‘Strong signal’ condition) or
a high level of noise (‘Weak signal’ condition) added to all spatial fre-
quencies. In the ‘Low-pass’ condition, signal in the low spatial frequency
range was retained, while high spatial frequency components were

randomized, and images the ‘High-pass’ condition had signal in the
high spatial frequency range while low spatial frequency components
were randomized. In all analyses of MEG data we included only data
from trials where participants responded correctly.

Object identity, object category and stimulus condition decoding

First we asked what information about object category and individ-
ual exemplar identity could be extracted from theMEG data. To address
this question we used a series of classification analyses, collapsing
across data from all stimulus conditions. In the first analysis, classifiers
were trained to discriminate each pair of exemplars; the average classi-
fication across each pair of exemplars is plotted in Fig. 2A. Next, the ex-
emplars were grouped into categories of animate or inanimate (Fig. 2B,
upper plot), and smaller or larger than a shoebox (Fig. 2B, lower plot).
These category boundaries both divided the 24 exemplars into two
groups of 12 exemplars, and these two boundaries were orthogonal.
Finally, we trained classifiers to discriminate between trials of different
stimulus conditions. We trained a classifier to discriminate stimuli in
the ‘Low-pass’ from the ‘High-pass’ condition (Fig. 2C, upper plot) and
to discriminate stimuli in the ‘Strong-signal’ condition from the
‘Weak-signal’ condition (Fig. 2C, lower plot). These analyses were car-
ried out for data from the peri-frontal and peri-occipital sensors
separately.

The evolution of classification performance over time followed a
similar pattern in each case and above chance classification perfor-
mance in peri-occipital areas always preceded that in peri-frontal
areas (where present) by 130–165 ms, (p b 0.01 in each case, based on
bootstrapped difference values). For peri-occipital areas, the onset of
above chance performance (taken as the start of the first 50ms interval
where classification performance was significantly above chance at all
time points) was slightly earlier for individual exemplar classification
(80 ms after stimulus onset) than for category boundaries (100 ms).
The small differences in onset times between the exemplar decoding
and the category decoding approached but did not reach significance
when the bootstrapped distribution of differences was compared to
zero (p = 0.063 for animacy versus exemplar, p = 0.12 for size versus
exemplar). Classification performance was stronger overall when the
classifier was trained to discriminate pairs of individual exemplars, so
the slightly earlier onset of above chance classifier performance in this
case might reflect the earlier accumulation of a stronger signal, rather
than a difference in the time at which relevant information is present
in peri-occipital areas. For peri-frontal areas, the onset of above chance
classifier performance did not vary significantly between decoding ob-
ject identity and decoding object category (p = 0.34 for animacy, p =
0.40 for size).

Separating responses to object category from those encoding indi-
vidual object identity is complicated by the fact that classification per-
formance could be based on either or both of these responses for both
exemplar and category decoding. However, the fact that exemplar clas-
sification was more accurate than classification of object category sug-
gests that when the classifier is trained to discriminate pairs of objects
it cannot be using only the object's animacy or size (task related) cate-
gory. By using the classification of objects according to a pseudo-
random category rule we found the baseline level of classification per-
formancewe could expect if the classifier learnt groups of individual ex-
emplars rather than using categorical object information present in the
neural data. This baseline is shown in Fig. 2B as green andorange dashed
lines for peri-occipital and peri-frontal classifiers, respectively. For both
the animacy and size (task related) categories, the classifier perfor-
mance exceeded this baseline for both peri-occipital and peri-frontal re-
gions, although for peri-frontal regions there were no 50 ms periods
where classification performance was significantly greater than for the
random category (the criterion for classification ‘onset’). For peri-
occipital regions, the onset of classifier performance exceeding that of
a random category was significantly (p b 0.01) later than the onset of
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above chance exemplar decoding. These results imply that at later times
(~220 ms after stimulus onset) classifier performance was based on
neural representations at the peri-occipital sensors where category in-
formation was an important feature, such that responses to within-
category objects were more similar than to between-category objects.

Finally,we show the classifier performancewhen trained to discrim-
inate the stimulus condition: ‘Low-pass’ versus ‘High-pass’ condition
(Fig. 2C, upper plot) and ‘Strong-signal’ versus ‘Weak-signal’ condition
(Fig. 2C, lower plot). These judgments are orthogonal to the classifica-
tion of object identity and object category, and so do not provide any di-
rect evidence of object-related information in the neural response.
Instead, these results offer insight into differences in how the brain is
processing stimuli from different conditions, which had exactly the
same power at each spatial frequency, but varied in the signal strength
at each spatial frequency. For both peri-occipital and peri-frontal sen-
sors, the classifier performance was above chance in both comparisons.
For peri-occipital sensors, the onset of decoding object condition was
20–45ms later than the onset of decoding object identity; decoding of
‘Strong-signal’ versus ‘Weak-signal’ was significantly later (p b 0.01),
while for ‘Low-pass’ versus ‘High-pass’ the difference approached

significance (p b 0.055). The fact that decoding of object condition
tended to be later than decoding object identity is consistent with the
stimulus conditions being closely matched in their low-level image sta-
tistics. After the first information about object identity is present in the
neural signal, suppression of irrelevant spatial frequencies and attention
to the image signal could be used by the classifier to discriminate trials
in the ‘Low-pass’ condition from those in the ‘High-pass’ condition.
When the classifier was trained to discriminate ‘Strong-signal’ from
‘Weak-signal’ trials, the image signal is in the same spatial frequency
bands. However, the classifier performancemay be based on the subject
attending to a greater extent ormakingmore effort when the image sig-
nal was weak, or on a neural correlate of uncertainty.

Classification of object identity across stimulus conditions

Next we considered the effect of stimulus condition (‘Strong signal’,
‘Weak signal’, ‘Low-pass’ or ‘High-pass’) on the decoding of object iden-
tity. To reduce our data set and facilitate comparisons between condi-
tions, we used a curve fitting procedure to summarize the average
classification of pairs of exemplars over time. For each participant, we

Fig. 2.Classification performance over time. Classifierswere trained and tested on a decision boundary based either on object identity, ignoring stimulus condition (A andB) or on stimulus
condition (‘Strong signal’, ‘Weak signal’, ‘Low-pass’ and ‘High-pass’), ignoring object identity (C). InA, classifierswere trained and tested on exemplar identity, averaged across each pair of
exemplars. In B, classifiers were trained to assign objects to one of two categories, either animate versus inanimate objects (upper plot) or to perform the participant's task: choosing
whether objects were larger or smaller than a shoebox, (lower plot). In C, data were split into two halves and the classifier was trained to discriminate object condition, either ‘Low-
pass’ versus ‘High-pass’ (upper plot) or ‘Strong-signal’ versus ‘Weak-signal’ (lower plot). In all plots the blue and red filled lines show classifier accuracy based on data from peri-
occipital and peri-frontal sensors, respectively, and shaded error bars indicate +/− 1.96 standard deviations (95% confidence intervals) of the between-subject mean (n = 9). Blue
and red ovals indicate time points at which classification performance was significantly above 0 (p b 0.05, one-sided t-test, FDR corrected). For the category decision rules in B we also
compared classifier performance on these category judgments to its performance when trained and tested on an arbitrary ‘category’ rule, where exemplars from the animacy and task
categories were equally represented. Classifier performance that exceeded that found for this arbitrary category decision rule (p b 0.05, paired one-sided t-test, FDR corrected) is indicated
by the light blue and light red crosses. Vertical lines (times labeled in bold type of corresponding color) show the onset of above chance classifier performance: the start of first 50 ms
interval of significant classifier performance (where present). Vertical shaded error bars indicate the 95% confidence intervals of these onsets (range printed in italicized type).
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initially performed the classifier analysis on all their data, including each
of the four stimulus conditions and MEG data from all 160 sensors. The
time course of classifier accuracy based on the entire data set is shown
in Fig. 3A for an example participant. We fit this curve with a weighted
sumof two gammaprobability density functions, andused thefitted pa-
rameters of this curve to restrict the model fits of other conditions for
that participant (see Methods for details). The average early peak time
for the peri-occipital sensors ranged from138ms (‘Low-pass’ condition)
to 141 ms (‘Weak signal’ condition), while the average time of the late
peak ranged from 227 ms (‘Strong signal’ condition) to 372 ms (‘Weak
signal’ condition). For peri-frontal sensors, the average time of the late
peak ranged from 403 ms (‘Strong signal’ condition) to 469 ms (‘Weak
signal’ condition). In each case the time of the late peak covaried with
the amplitude of the peak, consistentwith aweaker signal taking longer
to accumulate, and so we restricted our analyses to the amplitudes of
the fitted peaks. The average amplitudes of these peaks across partici-
pants (n = 9) are plotted in Fig. 4.

To test for significant differences in the classifier performance be-
tween stimulus conditions, we performed a repeated-measures
within-subjects analysis of variance (ANOVA) for both peri-occipital
and peri-frontal sensors. For peri-occipital sensors this indicated a sig-
nificant main effect of train and test condition on classifier accuracy,
for both early (F(3,24) = 69.2, p = 0.001), and late (F(3,24) = 27.3,
p b 0.001) peaks. As shown in Fig. 4, pairwise comparisons revealed
that classifier performance was significantly better in the ‘Strong signal’
condition than in the ‘Weak signal’ condition, for both early and late
peaks (p b 0.01), and better in the ‘Low-pass’ than ‘High-pass’ condition
for the early peak (p b 0.01) but not the late peak (p = 0.09). For all
pairwise comparisons we used the Dunn-Sidak correction for multiple
comparisons. For peri-frontal sensors, there was no significant effect of

train and test condition on classifier accuracy for either the early
(F(1.5,11.8) = .25, p = .721) or late (F(1.5,12.1) = 1.2, p = .321) peaks.

Generalization of classification performance across stimulus conditions

Next we asked whether object information was represented in a
similar way across stimulus condition. To address this we tested how
well the classification decision boundaries generalized from one stimu-
lus condition to another (Fig. 5). Specifically, for each participant we
trained a classifier on all data from one condition (for example the
‘Low-pass’ condition), and then used this decision boundary to classify
each trial from another condition (for example the ‘High-pass’ condi-
tion). The simplest example of this analysis is that shown in Fig. 5A,
where we trained on data from the ‘Low-pass’ condition and tested on
data from the ‘High-pass’ condition, and vice versa. In the unlikely sce-
nario that the high and low spatial frequency information contributed
to separate neural representations of object identity, there would be lit-
tle or no generalization of the classification rule from the training to the
test condition, which would result in low accuracy even where classifi-
cation performance within each condition is high. Instead, as shown in
Fig. 5A, the classification accuracywhen training on ‘Low-pass’ and test-
ing on ‘High-pass’ or vice versa was similar to that found when training
and testingwithin the ‘High-pass’ condition, suggesting that signal from
high and low spatial frequencies produces qualitatively similar repre-
sentations of object identity. This does not mean that there is no infor-
mation in the neural response about which spatial frequency is

Fig. 3. A andB showthe time course of average classifier accuracy for an example participant, averagedacross the classifier's ability to discriminate eachpossible pair of objects, using d’ as a
measure of thediscriminability of the image pairs. InA, the classifierwas trained and tested ondata from all four conditions across all sensors. InB the classifierswere trained and tested on
data from each of the four conditions separately, and were restricted to data either from the peri-occipital sensors (filled lines) or peri-frontal sensors (dashed lines). In each case average
classifier performance is overlaid by the best fitting model (a weighted sum of two gamma probability density functions, see text for details).

1 Degrees of freedom corrected using Greenhouse–Geisser Epsilon after Mauchly's test
indicated that the assumption of sphericity had been violated; early: χ2 “15.0, p ă 0.05;
late: χ2 “11.6, p ă 0.05.
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carrying signal: as shown in Fig. 2C and discussed above, classification of
whether a stimulus belonged to the ‘Low-pass’ or ‘High-pass’ condition
was above chance, but it means that there is also information in the sig-
nal that generalizes over the different spatial frequencies.

Is there any evidence that low-pass and high-pass signal produce
qualitatively different representations of object identity? As a further
test for evidence of this we used cross-classification performance to
test whether the object-related information used by the classifier in
the ‘Strong signal’ and ‘Weak signal’ conditions showed a bias towards
low or high spatial frequencies. We trained classifiers on data from ei-
ther the ‘Strong signal’ or ‘Weak signal’ condition, and used these classi-
fication boundaries to classify data from the ‘Low-pass’ and ‘High-pass’
conditions. If the object representation is qualitatively similar across
conditions, then the cross-condition classification performance should
depend only on the strength of that signal in the training and test con-
ditions (as summarized in Fig. 4). Alternatively, if brain activity at the
early peak had a bias (for example) for information contained in the
low spatial frequencies, we would expect that a classifier trained on
data from the broadband stimulus conditions (‘Strong signal’ and
‘Weak signal’) would show better generalization when tested on data
from the ‘Low-pass’ condition than when tested on data from the
‘High-pass’ condition. Importantly, to signify a real bias, this difference

in generalizationmust be beyond that predicted by the generally higher
classifier performance within the ‘Low-pass’ compared with the ‘High-
pass’ condition.

Results of the cross-condition classification analysis are shown in
Fig. 5B. We conducted a series of analyses of covariance to test the sig-
nificance of the effect of training and test stimulus condition on classifi-
cation accuracy when controlling for the covariates of classification
accuracy within the training and test conditions. At the early peak,
there was no significant difference in classification accuracy between
the training and test conditions for peri-occipital (F(3,16) = 12.50, p =
.10) and peri-frontal (F(3,16) = 0.89, p = .47) sensors. Similarly, at the
late peak there was no significant difference in classification accuracy
between the training and test conditions for peri-occipital (F(3,16) =
2.07, p = .14) and peri-frontal (F(3,16) = 1.34, p = .30) sensors.

In summary, for each of the cross-condition classification analyses
(Fig. 5A and B) our results are consistent with the classifier relying on
a qualitatively similar representation of object identity. This does not
exclude the possibility that spatial frequency dependent representa-
tions exist, but implies that the dominant representations of object
identity that are learnt by the classifier are not highly spatial-
frequency specific, even when the classifier is trained on brain re-
sponses to ‘Low-pass’ or ‘High-pass’ stimuli.

Fig. 4. Average within-condition classifier performance (n=9) at both early and late peaks of the curves that were fit individually to the time courses of classifier performance over time
for each participant (see illustration in Fig. 3 and text for details). Classifier performance based on data from peri-occipital sensors is shown in plots on the left, based on the peri-frontal
sensors is shown inplots on the right.A: 'Strong signal' and 'Weak signal' stimulus conditionsB: ‘Low-pass’ and ‘High-pass’ signal conditions. Error bars indicate 95% confidence intervals of
the between-subjectmeans, and dotted horizontal lines indicate expected peaks based on chance performance (seeMethods for details). Asterisks (**) showwhere pairwise comparisons
revealed a significant difference between the stimulus conditions (p b 0.01).
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Feedforward and feedback flows of object representations

Finally, we tested for evidence of feedforward and feedback flows of
information during the evolution of object representations. Using dis-
similarity matrices (DSMs) as a measure of the object representational
space at a given time,we quantified theGranger causal relationships be-
tween the evolution of DSMs based on peri-occipital sensors, and based
on the peri-frontal sensors. Briefly, this quantifies the degree to which
the DSM based on peri-occipital sensors predicted the DSM based on
peri-frontal sensors at a later time, and vice versa. Thesemethods are il-
lustrated in Fig. 6, and the calculations of feedforward and feedback in-
formation flows are specified in Eqs. (3) and (4).

Results of this analysis are plotted in Fig. 7, for the average across all
conditions (Fig. 7A) and for individual stimulus conditions (Fig. 7B–E).
Across all stimulus conditions, feedforward flows of information were
significantly greater than feedback flows of information within the
first 500ms post stimulus onset, that is, while the stimulus was visible.
The earliest time at which the feedback flow of information was signif-
icantly greater than the feedforward flowwas at ~300ms post stimulus
onset, for the ‘Low-pass’ condition.

Based on the Bar (2003); Bar et al. (2006) model of object percep-
tion, we predicted that there would be more evidence of feedback
in the ‘Low-pass’ than the ‘High-pass’ condition. We found more
time points with evidence of feedback flows of information in the
‘Low-pass’ than the ‘High-pass’ condition, but not at the early time
(b120 ms after stimulus onset) predicted by the Bar (2003); Bar et al.
(2006) model. Comparing feedforward and feedback flows across con-
ditions is complicated by the fact that the estimates will vary with
both the degree to which the signals are fed forward and fed back,
and also on the signal strength. For instance, the greater feedback in
the ‘Strong signal’ compared to the ‘Weak signal’ condition is likely
due to the lower signal strength in the ‘Weak signal’ condition, rather
than necessarily showing there is less feedback in the ‘Weak signal’
case. The estimates of feedforward and feedback information flows
will be affected by noise in the dissimilarity matrices (DSMs) when
signal strength is lower, as in the case of the ‘Weak signal’ condition.
Nonetheless, we believe this approach provides a useful new method
for analyzing the connectivity between brain regions in terms of the
information they carry about a specific feature of interest (in this case,
object identity).

Fig. 5.Average cross-condition classifier accuracy when generalizing from one stimulus condition to another (n=9). Plotted here is the average classification accuracywhen a classifier is
trained to discriminate each image pair using data from one stimulus condition, then tested on data from another stimulus condition, conventions as in Fig. 4. A: Generalization across
different spatial frequency conditions. The classifier was trained on data from the ‘Low-pass’ condition and tested on data from the ‘High-pass’ condition (and vice versa). As seen in
the plot, when the training and test conditions were swapped the classification performance was near identical; since this was found for all cases of generalization, in B only one
direction of generalization is reported for each case. B: Generalization from the conditions with broadband spatial frequency content (the ‘Strong signal’ and ‘Weak signal’ conditions)
to the ‘Low-pass’ and ‘High-pass’ conditions. An analysis of covariance (see text) did not reveal any significant differences between the conditions once the differing signal strengths of
the conditions were factored out.

393E. Goddard et al. / NeuroImage 128 (2016) 385–397



Discussion

What neural mechanisms underlie our ability to rapidly and accu-
rately identify visual objects? Previous work has suggested that low
and high spatial frequency stimulus information make differential con-
tributions to object perception. In particular, a range of studies (Bar,
2003; Bar et al., 2006; Kveraga et al., 2007; Chaumon et al., 2014;
Fintzi and Mahon, 2014) have found evidence consistent with low-
pass object information being rapidly projected (within 130ms of stim-
ulus onset) to frontal areas where it is fed back to occipital object-
selective areas. However, no study to date has tested for evidence that
object identity information is present in the frontal regions at this
early time after stimulus onset. Here we applied multivariate pattern
classification analysis to MEG data (Carlson et al., 2013; Isik et al.,
2014) to test for evidence of object identity information in both peri-
occipital and peri-frontal areas, and to characterize the time course of
how this information evolves.

Importantly, unlike previous studies, we used stimuli that had the
same power at each spatial frequency, and the same overall contrast,
varying only the ‘diagnostic’ spatial frequencies (De Gardelle and
Kouider, 2010). We equated our stimulus conditions for these low
level features to facilitate better comparisons between conditions,
given that the early response of the occipital cortex to visual objects,
as measured using EEG and/or MEG, covaries with low-level stimulus
statistics (Martinovic et al., 2008; Clarke et al., 2013).

Object related information in peri-frontal and peri-occipital regions

Across all conditions, there was an early (138–140 ms) and a late
(227–372 ms) peak in classifier performance when the classifier was
trained on data from the peri-occipital sensors. In peri-frontal sensor
data we did not find any evidence of early (b200 ms) neural encoding
of object identity, but we did find evidence of object identity informa-
tion at a later time, peaking at 403–469ms after stimulus onset. This re-
sult is seemingly inconsistent with the previous findings of Bar et al.
(2006), who reported the left OFC (located within our broadly defined
‘peri-frontal’ sensors) showed differential activity to recognized versus
not recognized objects as early as 130 ms after stimulus onset.

One possible reason for the discrepancy between our results and
those of Bar et al. (2006) is that our study explicitly tests for object-
identity information by using a classification analysis, whereas Bar
et al. (2006) reported differences in the average response of the OFC
when a stimulus is or is not recognized. It could be that the object-
related responses found in previous studies (Thorpe et al., 1996; Bar
et al., 2006) are associatedwith the detection of object, without carrying
specific information about object identity.

Alternatively, it is possible that object identity informationwas pres-
ent in the front of the brain at an early time but tooweak to be detected.
The fact that we find significant classifier performance based on the
peri-frontal sensors at a later timedemonstrates that ourmethod is sen-
sitive enough to reveal object identity information in the peri-frontal
sensors, but our stimulus conditions may not have been optimal for
revealing any early object identity information in prefrontal cortex.
For example, object identity may be decodable from the early activity
of prefrontal cortex when there is a shorter stimulus duration or
in the presence of masking, as used in previous work (Bar et al., 2006;
Thorpe et al., 1996).

Comparison of object-identity information across different conditions

We compared brain responses to the different stimulus conditions
using the average discriminability of each image pair when the classifier
was trained on recordings of the peri-occipital and peri-frontal sensors.
We found significant differences between conditions for the peri-
occipital but not the peri-frontal sensors, even though classification
accuracy based on the peri-frontal sensors was above chance at the

Fig. 6. Illustration of the method for calculating simple Granger causal relationships
between the peri-frontal and peri-occipital sensors, dubbed feedfoward and feedback
information flows. In a ‘sliding window’ analysis, at each time point (t) we compared
the dissimilarity matrices (DSMs) derived from classifier accuracy on the peri-frontal
sensors and the peri-occipital sensors. To estimate the ‘feedforward flow’ of information
(shown in blue) we took the partial correlation between the DSM based on peri-frontal
sensors at time t (DSM(front,t)), and the average DSM based on the peri-occipital sensors
from time t-150 ms and t-100 ms (DSM(back,t-125)), discounting the correlation with the
average DSM based on the peri-frontal sensors from time t-150 ms and t-100 ms
(DSM(front,t-125)), as given in Eq. (3). We used the same principle with the same time
points to estimate the ‘feedback flow’ of information (shown in red, and specified in
Eq. (4)). This analysis yielded an estimate of the feedforward and feedback flows of infor-
mation for each time point, for each participant. The plot at the top shows the average
classifier accuracy across participants (classifier performance based on peri-occipital
and peri-frontal sensors is shown in black and green, respectively). The plots at the bot-
tom show the estimated feedforward and feedback information flows (upper plot), and
the difference between them (lower plot). In each case the shaded error bars indicate
the 95% confidence intervals of the between-subject mean. In the lower plot, times at
which the differencewas significantly positive or negative are indicatedwith circles, filled
with blue and red, respectively. Light circles show time points where the difference was
significant at p b 0.01, (uncorrected) and dark circles indicate p b 0.05 (FDR correction
for multiple comparisons across time).
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late peak (403–469ms) for all four stimulus conditions. This interaction
might mean that responses to the different conditions are more similar
in frontal regions; however, since the classifier performance was lower
overall for peri-frontal than for peri-occipital sensorswe cannot exclude
the possibility that the interaction is caused by the weaker signal mak-
ing it harder to detect between-condition differences.

For peri-occipital sensors, at both early and late peaks, the average
classification performance was significantly better with data from the
‘Strong signal’ than the ‘Weak signal’ condition, and classification
performance was stronger at the earlier than the later peak for both
conditions (Fig. 4A). When the stimulus signal was restricted to either
low or high spatial frequencies, the classification performance was

Fig. 7. Difference between feedforward (FF) and feedback (FB) flows of information (upper plots) and average classifier performance (lower plots) across all conditions (A), and for the
‘Strong signal’ (B), ‘Weak signal’ (C), ‘Low-pass’ (D) and ‘High-pass’ (E) conditions. Partial correlationswere used to estimate FF and FB flows of information (see Fig. 6), and the difference
between these flows is plotted in the upper plots ofA–E, with shaded gray error bars indicating the 95% confidence intervals of the between-subjectmean. The filled circles indicate times
at which this difference was significantly above or below zero (as assessed by comparison with a bootstrapped null distribution) for two statistical thresholds: p b 0.01 (uncorrected) is
shown in lighter circles, and the more conservative p b 0.05 (FDR corrected for multiple comparisons across time points) is shown in darker circles. In the lower plots of A–E, average
classifier performance is plotted for classifiers based on the peri-occipital sensors (black) and peri-frontal sensors (green), with shaded error bars indicating the 95% confidence
intervals of the between-subject mean. For these plots of average classifier performance, times at which the FF-FB difference was significantly above or below zero are replotted, in
blue where FF-FB N 0 and red where FF-FB b 0.
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significantly better for the ‘Low-pass’ condition than the ‘High-pass’
condition at the early peak, but at the late peak there was no significant
difference between these conditions (Fig. 4B).

Overall, classification performance at the late peak reflected task
performance better than at the early peak, although both were well
before average reaction time (late peak: 227–372 ms, median reaction
time: 1750 ms). The main difference was driven by the ‘High-pass’
condition: participant performance was better for ‘High-pass’ than for
‘Weak signal’ stimuli, but at the early peak, classifier performance for
the ‘Weak signal’ condition exceeded that of the ‘High-pass’ condition.
At the late peak, classifier performance on these two conditions was re-
versed, reflecting participant performance, implying that object repre-
sentation decoded at the later peak better reflected the ‘final’ object
representation on which the participant's task decision was based.

Evidence of coarse-to-fine processing for the peri-occipital sensors

Interestingly, the ‘High-pass’ condition for peri-occipital sensorswas
the only conditionwhere classifier decodingwas better at the later peak
than at the early peak. This result implies that the high spatial frequency
information about object identity took longer to become available than
the low spatial frequency object information. This interpretation is con-
sistent with the fact that classifier performance in the ‘Low-pass’ condi-
tion was higher than the ‘High-pass’ condition at the early peak but at
the later peak the classifier performance was similar for these condi-
tions. Critically, all our experimental stimuli had the same Fourier
amplitude spectra, meaning that they were matched in terms of their
spatial frequency content. This ensured that any differences between
the ‘Low-pass’ and ‘High-pass’ conditions did not reflect the presence
or absence of power in the image at the relevant spatial frequencies.
Instead, the differences between these conditions reflect differences
between the ways in which image signal at these spatial frequencies is
processed, and how it contributes towards object perception.

These findings are consistent with previous psychophysical results
that suggest a coarse-to-fine bias in human scene and object perception.
Coarse-to-fine processing has been used to describe a broad range of
physiological and perceptual phenomena, and it remains unclear how
or whether these observed effects are related (Hegd´e, 2008), but in
each case refers to the general precedence of low over high spatial
frequencies in visual perception. For instance, when participants are
shown a rapid sequence of scene or face images containing a narrow
range of spatial frequencies, they more readily integrate information
when the filtered images are presented in a coarse-to-fine than ‘fine-
to-coarse’ order Schyns and Oliva (1994); Parker et al. (1992, 1997).
For simple grating stimuli, Hughes et al. (1996) found that a low fre-
quency distracter interfered with the processing of the high frequency
target when presented up to 100 ms after the onset of the target, but
the high frequency distracter did not interfere with the processing of
the low frequency target. Each of these results implies that the coarse-
to-fine presentation more closely reflects the order in which the visual
system extracts information under natural viewing conditions.

Using reverse correlation of stimulus and single-unit recordings in
macaque, Mazer et al. (2002) and Bredfeldt and Ringach (2002) found
that the preferred spatial frequency of the majority of V1 cells shifts
from lower to higher frequencies over the course of their stimulus-
evoked response. Applying reverse correlation methods to human per-
ception, Neri (2011) found evidence of an early non-linear process
with coarse spatial tuning followed by a linear process with fine spatial
tuning. However, as noted byNeri (2011) andMareschal et al. (2006), it
is unclear whether these behavioral effects can be attributed to the re-
sponse properties of single cells as revealed with electrophysiology.

The findings of the present study suggest there is a coarse-to-fine
progression in the population-level of the neural response to objects
in peri-occipital areas: object representations based on high spatial
frequency information take longer to evolve than those based on low
spatial frequency information, suggesting that this information is

slower to propagate through the early visual system. However, cross-
classification analyses (Fig. 5A) demonstrated that the object identity
information learnt by the classifier in the ‘Low-pass’ condition could
be used to accurately discriminate stimuli from the ‘High-pass’ condi-
tion, and vice versa, at both early and late peaks. This cross-condition
classification performance suggests that signal from high and low spa-
tial frequencies results in qualitatively similar representations of object
identity, even though low-spatial frequency signals are propagated
more quickly by precortical stages of the visual system.

Evidence for feedforward and feedback information flows

By applying a simplified Granger causality analysis to our multivari-
ate measure of object representation, we were also able to measure the
extent to which the object-identity information from the peri-occipital
sensors could predict later object representations of the peri-frontal
sensors, and vice versa (Fig. 7).Weused this analysis to test for evidence
of feedforward and feedback flows of information. For all conditions,
times of significantly greater feedforward than feedback occurredwith-
in the first 500ms (that is, while the stimuluswas still present). This re-
sult is consistent with the visual system continuing to receive ‘bottom-
up’ information about object identity while the stimulus is present.
After the offset of the stimulus, the interactions between frontal areas
and early visual areas are dominated by ‘top-down’ information flows.

We found the earliest feedback in the ‘Low-pass’ condition, which is
consistent with the faster processing of low spatial frequency informa-
tion, as discussed above. The onset of this feedback (~300ms after stim-
ulus onset) occurred while the stimulus was still present, at a time
when there was evidence of feedforward flows in other conditions
(‘High-pass’ and ‘Weak-signal’ conditions). The onset of feedback in
the ‘Low-pass’ condition is still not as early as that predicted by Bar
et al. (2006) (130–180ms). However, a limitation of the present analy-
sis for evaluating feedback in the first few hundred milliseconds is that
feedforward flows of information were dominant while the stimulus
was present, suggesting that future work with shorter stimulus presen-
tations may better elucidate the role of feedback immediately after
stimulus onset.

This analysis of feedforward and feedback information offers a useful
new tool for investigating the flow of relevant information between
brain areas, rather than a simpler analysis of their connectivity which
may or may not reflect connectivity related to the processing of a fea-
ture of interest.

Conclusions

WeusedMEG to explore the representational dynamics of visual ob-
ject processing, and the impact of stimulus spatial frequency on these
dynamics. Our study confirms that low and high spatial frequency infor-
mation about object identity is processed differently by the visual sys-
tem: information about object identity that is carried by low spatial
frequency signals is more readily available in peri-occipital areas at an
early time (~140ms after stimulus onset), consistent with previous be-
havioral studies demonstrating the coarse-to-fine progression of visual
perception. Ournewmethod formeasuring feedforward and feedback in-
formation flows offers a new approach for testing whether brain regions
are functionally connected and communicating specific information
about a feature of interest. We believe this approach could be applied to
a variety of experimental questions, and may be useful in future work
to further reveal the role of prefrontal cortex in object perception.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.01.006.
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