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Contrast adaptation is a fundamental visual process that
has been extensively investigated and used to infer the
selectivity of visual cortex. We recently reported an
apparent disconnect between the effects of contrast
adaptation on perception and functional magnetic
resonance imaging BOLD response adaptation, in which
adaptation between chromatic and achromatic stimuli
measured psychophysically showed greater selectivity
than adaptation measured using BOLD signals. Here we
used magnetoencephalography (MEG) recordings of
neural responses to the same chromatic and achromatic
adaptation conditions to characterize the neural effects
of contrast adaptation and to determine whether BOLD
adaptation or MEG better reflect the measured
perceptual effects. Participants viewed achromatic, L-M
isolating, or S-cone isolating radial sinusoids before
adaptation and after adaptation to each of the three
contrast directions. We measured adaptation-related
changes in the neural response to a range of stimulus
contrast amplitudes using two measures of the MEG
response: the overall response amplitude, and a novel
time-resolved measure of the contrast response
function, derived from a classification analysis combined
with multidimensional scaling. Within-stimulus
adaptation effects on the contrast response functions in
each case showed a pattern of contrast-gain or a
combination of contrast-gain and response-gain effects.
Cross-stimulus adaptation conditions showed that
adaptation effects were highly stimulus selective across
early, ventral, and dorsal visual cortical areas, consistent
with the perceptual effects.

Introduction

Adaptation to contrast has been extensively studied
in vision and is believed to be part of a process of
contrast normalization, in which the visual system shifts
its dynamic range in response to the changing visual
environment. Contrast adaptation is evident at many
levels in the human visual system, including behavioral
responses (Blakemore & Campbell, 1969; Blakemore &
Nachmias, 1971; Gibson & Radner, 1937; Krauskopf,
Williams, & Heeley, 1982; Krauskopf, Williams,
Mandler, & Brown, 1986), cortical BOLD responses
(Boynton & Finney, 2003; Engel, 2005; Engel &
Furmanski, 2001; Fang, Murray, Kersten, & He, 2005;
Gardner, Sun, Waggoner, Ueno, Tanaka, & Cheng,
2005; Grill-Spector & Malach, 2001; Krekelberg,
Boynton, & van Wezel, 2006) and visual evoked
potentials (VEPs) (Blakemore & Campbell, 1969;
Campbell & Maffei, 1970; Dong, Du, & Bao, 2020;
Duncan, Roth, Mizokami, McDermott, & Crognale,
2012). Electrophysiological recordings in non-human
species have also characterized how contrast adaptation
shifts the responses of single neurons (e.g., Movshon &
Lennie, 1979); Ohzawa, Sclar, & Freeman, 1982; also see
reviews by Kohn, 2007, and Solomon & Kohn, 2014).

For decades, adaptation has been widely used
as a scientific tool to infer the tuning of distinct
visual responses and has played an important role in
defining selective responses for low level properties
such as orientation, spatial frequency, and direction,
as well as higher level visual responses (Webster,

Citation: Goddard, E., Shooner, C., & Mullen, K. T. (2022). Magnetoencephalography contrast adaptation reflects perceptual
adaptation. Journal of Vision, 22(10):16, 1–19, https://doi.org/10.1167/jov.22.10.16.

https://doi.org/10.1167/jov.22.10.16 Received January 20, 2022; published September 19, 2022 ISSN 1534-7362 Copyright 2022 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Downloaded from jov.arvojournals.org on 10/12/2022

mailto:erin.goddard@unsw.edu.au
mailto:christopher.shooner@mail.mcgill.ca
mailto:kathy.mullen@mcgill.ca
https://doi.org/10.1167/jov.22.10.16
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Vision (2022) 22(10):16, 1–19 Goddard, Shooner, & Mullen 2

2011; Webster, 2015). In color vision, behavioral
adaptation experiments have inferred the presence
of three distinct low-level responses (two cone
opponent and one achromatic) (Krauskopf et al., 1982;
Krauskopf et al., 1986). This, combined with other
psychophysical approaches, allowed the definition of
three cardinal stimuli, each of which selectively isolates
one of the three postreceptoral responses. Subsequent
measurements have shown that adaptation is not as
cleanly selective as first thought (Webster & Mollon,
1994) and that the degree of selectivity depends on
the type of behavior measured, whether detection
thresholds or suprathreshold contrast appearance
(Goddard, Chang, Hess, & Mullen, 2019). Hence,
although a useful tool, adaptation in color vision is a
complex process that is likely to involve many levels in
the visual system.

Even with these caveats, it is important to know
whether selective responses inferred by behavioral
adaptation experiments are also evident using
different measurement methods, such as single neuron
recording or BOLD responses. These comparisons
provide a means of identifying the physiological basis
of behaviorally defined tuned responses, and also
validating the assumptions made from the behavioral
data. For example, given that color selectivity is found
at a behavioral level, can we also expect to find selective
responses at a physiological level? Mullen, Chang, &
Hess (2015) and Goddard et al. (2019) directly tested
the link between psychophysical and BOLD contrast
adaptation with the overall aim of determining the
cortical location of selectivity for color contrast.
Although selective adaptation to color contrast was
found psychophysically, the selectivity of BOLD
responses measured under the same conditions was
much weaker. Mullen et al. (2015) reported significant,
but not complete, selective adaptation to stimuli
isolating the L/M cone opponent responses, especially
in the area VO of the ventral visual cortex. Some
selectivity was also found for achromatic contrast in
the dorsal cortical regions. Responses in other areas,
including V1 and V2, were unselective, in contrast to
previous reports of selectivity for L/M cone opponent
and achromatic adaptation effects as early as V1
(Engel, 2005; Engel & Furmanski, 2001). Surprisingly,
when the responses to S-cone isolating stimuli were
included in a subsequent study (Goddard et al., 2019),
no selectivity was found in any cortical area tested.
Instead, there was a strong cross-stimulus adaptation
between S-cone isolating and achromatic contrast that
matched the within-stimulus adaptation both for S-cone
isolating and achromatic test stimuli. This disconnect
in the selectivity of adaptation to color contrast for
BOLD compared with behavior is one example of
a remaining gap in our understanding of contrast
adaptation.

Here, we aim to better understand the neural
processes underlying contrast adaptation in human

visual cortex using a complementary measure of neural
activity. We use magnetoencephalography (MEG)
measurements in a comparable study of cross- and
within-stimulus adaptation as we have used previously
both psychophysically and for BOLD (Goddard et al.,
2019;Mullen et al., 2015). Unlike BOLDmeasurements,
MEG measures signals related to the electrical activity
of neurons independently of blood oxygenation levels.
In this way, MEG is similar to VEP measurements,
which have previously been used to measure chromatic
adaptation (Rabin, Switkes, Crognale, Schneck, &
Adams, 1994), chromatic contrast adaptation within
the isoluminant plane (Duncan et al., 2012), and
achromatic contrast adaptation (e.g., Blakemore &
Campbell, 1969; Dong et al., 2020). Unlike these VEP
studies, which were focused on responses the occipital
pole, here we use MEG to simultaneously measure
from multiple sites across the cortex, including signals
from ventral visual areas (e.g., as in Bartsch, Loewe,
Merkel, Heinze, Schoenfeld, Tsotsos, & Hopf, 2017),
which are particularly relevant here since area VO was
a site of selective adaptation in the previous BOLD
adaptation work whereas V1 was not (Mullen et al.,
2015). MEG has been used to measure reliably different
patterns of cortical response to isoluminant stimuli
varying only in chromaticity (e.g., Rosenthal, Singh,
Hermann, Pantazis, & Conway, 2021; Teichmann,
Grootswagers, Carlson, & Rich, 2019; Teichmann,
Quek, Robinson, Grootswagers, Carlson, & Rich,
2020).

UsingMEG, we measured within- and cross-stimulus
adaptation for the same chromatic and achromatic
stimuli as used in previous work. We report the effects
of adaptation on the overall amplitude of visual cortical
responses to stimuli across a range of contrast levels,
and we introduce a new analysis of contrast response
functions based on multivariate classification analyses
in conjunction with multidimensional scaling. We find
strong evidence of selective adaptation across all visual
areas, consistent with the behavioral effects of these
stimuli.

Materials and methods

Participants

We collected MEG data on six participants (four
female, two male, aged 22-35 years). Five of the
six participants participated in the psychophysical
experiments reported in our previous work (Goddard
et al., 2019), and their data are included in the replotted
psychophysical data in Figure 7. In addition, three of
the six current participants who participated in one or
more of the functional magnetic resonance imaging
(fMRI) adaptation experiments in our previous work
(Goddard et al., 2019; Mullen et al., 2015).
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Figure 1. Spatial and temporal stimulus properties. (A) Adaptor and test stimuli were radial sinewave gratings calibrated to isolate the
Ach, RG, or BY responses. (B) Example time course of “no adaptor” blocks with test stimulus trials shown in blue, each including one
cycle of the 2 Hz sinusoidal contrast phase alternation in the 500 ms test interval. (C) Example time course of “adapt” blocks, with
1.5 seconds of top-up adaptor shown in orange (that follows a single 60-second initial adaptation), and test stimulus trials shown in
blue. In one MEG recording session, one type of adaptor was shown (Ach, RG, or BY) but across trials test stimuli were either Ach, RG,
or BY.

Participants who participated in the MEG
experiment reported here each completed an MRI
session in which we acquired high-resolution anatomical
images of their brains and functional data used to
define regions of interest. All participants were healthy
with no history of neurological or psychiatric disorders
and provided informed consent. Each participant
had normal or corrected-to-normal visual acuity, and
normal color vision as assessed with Ishihara plates
(Ishihara, 1990) and the Farnsworth-Munsell 100-hue
test (Farnsworth, 1957). All experimental procedures
were approved by the Ethics Review Board of the
McGill University Health Centre and were conducted
in accordance with the Declaration of Helsinki.

Visual stimuli

All stimuli in the MEG experiment were radial
sinewave gratings, as used in previous work (Goddard
et al., 2019; Goddard & Mullen, 2020; Mullen,
Dumoulin, McMahon, de Zubicaray, & Hess, 2007;
Mullen et al., 2015). For each of the three stimulus types,
contrast was either achromatic (Ach), isoluminant
“red-green” (RG), or “blue-yellow” (BY), modulated
about a mean gray, and calibrated to isolate the
luminance, L/M cone opponent, or S-cone opponent

responses, respectively. The stimuli each had a spatial
frequency of 0.5 cycles/deg, and a 2 Hz sinusoidal
contrast phase alternation. The low spatial frequency of
the two chromatic stimuli reduces luminance artifacts
generated by chromatic aberration for the chromatic
stimuli (Bradley, Zhang, & Thibos, 1992; Cottaris,
2003; Mullen, 1985). Each radial sinewave grating was
19° in diameter and outside the stimulus area the screen
was at its mean luminance, as illustrated in Figure 1.

Stimulus chromaticity was defined in a three-
dimensional cone contrast space, with each axis
representing the quantal catch of the L, M and S cone
types normalized with respect to the grey background
(i.e., cone contrast). The vector direction and length
within this space defines chromaticity and cone contrast
respectively. We note that this definition differs from
Michelson contrast because a full-contrast achromatic
grating modulates each cone by 100% (LMS = [1,1,1])
and so has a total cone contrast of �3 (173%). We
determined isoluminance of the RG stimuli for each
subject individually based on perceptual minimum
motion settings as previously described (Mullen,
Thompson, & Hess, 2007; Mullen et al., 2010). Each
participant adjusted the proportion of RG color to
luminance contrast in a downward drifting grating until
its perceived motion/flicker was at a minimum. The
grating was 0.5 cycle/deg, 10° diameter, with 5Hz drift,
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and the isoluminance settings were repeated at least 5
times then averaged for each participant. We used the
standard S-cone isolating direction for all observers.
We verified that this direction was the optimal for
isolation of the S-cones for each participant by using a
method or adjustment to varying vector angle within
the isoluminant plane to determine the direction of
minimum visibility (Michna, Yoshizawa, & Mullen,
2007). In all subjects, this corresponded closely to the
S-cone isolating axis.

For adapting stimuli, we chose high stimulus cone
contrasts (48% for Ach, 9.3% for RG, and 40% for
BY), with the aim of inducing robust adaptation
effects. For each test stimulus type, we used a range
of 4 logarithmically spaced stimulus cone contrasts
(Ach: 18%–123%, RG: 1.4%–14%, and BY: 7.1%–57%),
in each case including contrasts that were highly
visible to maximize the chance of evoking visual
responses that would be measurable with MEG. The
three types of stimuli were chosen to be at the upper
end of the available contrast range to maximize the
adaptation effects. Contrasts are higher than those
used in our previous publications (e.g., Goddard et al.,
2019; Mullen et al., 2007) because the ProPixx DLP
LED projector used here was capable of generating
higher color contrasts. The cone contrast levels are
different across Ach, RG and BY stimuli as the visual
system has differing levels of sensitivity to these three
different contrast types (Sankeralli & Mullen, 1996).
Approximately, our contrasts are 30 times threshold for
the two chromatic stimuli and 40 times threshold for
the achromatic stimulus.

MEG methods: Acquisition protocols

MEG data were collected with a whole-head MEG
system (CTF OMEGA System) consisting of 275
axial gradiometers. For each MEG session we first
collected five minutes of empty room recordings,
which we used to estimate noise covariance of the
sensors (see below). Before the participant entering the
magnetically shielded room, three marker coils were
placed on the participant’s head. Marker positions,
nasion, left and right pre-auricular points, and the
participant’s head shape were recorded with a pen
digitizer (Isotrak; Polhemus, Colchester, VT, USA),
using a minimum of 500 points. Two electrooculogram
electrodes were places above and below the left eye,
to record eye blinks and eye movements during the
MEG session. Two electrodes were placed across the
plane of the chest to collect electrocardiographic
signals, and a reference electrode was placed below
the participant’s collarbone. Each participant’s
MEG data and simultaneous electrooculographic
and electrocardiographic signals were collected at a
sampling frequency of 2400Hz. In conjunction with
these data, we collected participants’ button responses

using a Vpixx ResponsePixx button box system
(VPixx Technologies, Saint-Bruno-de-Montarville, QC,
Canada).

MEG methods: Display apparatus and
calibrations

We displayed stimuli using a PROPixx DLP LED
projector (VPixx Technologies; resolution 1920 ×
1080), located outside the magnetically shielded room,
to back-project images onto a custom screen via two
mirrors. Participants, lying supine in the MEG system,
viewed the custom screen, located above them, from a
distance of 45 cm. We used a Windows PC (Windows
7) running MATLAB (R2017a; MathWorks, Inc.,
Natick, MA, USA) in conjunction with routines from
Psychtoolbox 3.0 (Brainard, 1997; Kleiner, Brainard,
& Pelli, 2007; Pelli, 1997) to generate and project the
stimuli (refresh rate 60Hz, mean luminance 106 cd/m2).
The PROPixx DLP LED projector has a linear gamma,
and was color calibrated as described previously
(Michna et al., 2007; Mullen et al., 2007; Mullen,
Dumoulin, & Hess, 2008). We precisely aligned stimulus
presentation times with the recorded MEG data using
the VPixx “Pixel Mode” to record the output of a single
pixel along with the MEG data.

MEG methods: Experimental design and
participant’s task

Each participant completed three MEG sessions on
different days, each separated by at least one week. All
test stimuli were used in all sessions. Across different
sessions the participants were adapted to either the
Ach, RG or BY adaptor stimulus: each session included
a single adaptor stimulus, and the order of these
was counterbalanced across participants. Each MEG
session was divided into six blocks of eight to nine
minutes each, with breaks between blocks.

A total of 694 trials without any adaptation were
split across the first two blocks of each session, followed
by another 694 trials with adaptation, which were
split across the remaining four blocks. Across trials,
test stimuli were either Ach, RG, or BY contrast, at
one of four contrast levels. Each test stimulus was 500
ms, including one full cycle of the 2 Hz sinusoidal
modulation. The 500 ms sinusoidal modulation was
presented within a temporal Gaussian envelope (sigma
125 ms), resulting in a contrast modulation with the
temporal profile plotted in Figure 1. Contrast polarity
was reversed on half the trials, giving a total of 24
unique test stimuli (3 types × 4 contrasts × 2 polarities),
to which we added a blank trial type of the mean grey
screen. Participants viewed each stimulus trial type 26
times, and the blank trial type 52 times, giving the total
694 trials in each no-adapt and adaptation condition.
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These 694 trials were counterbalanced so that each trial
type was equally likely to be preceded by every other
trial type.

In the no-adaptation conditions, the 500 ms stimuli
were presented with 750 ms intertrial intervals of a
mean gray blank screen, as shown in Figure 1B. The
first adaptation block commenced with 60 seconds’
initial adaptation, whereas the remaining adaptation
blocks commenced with 15 seconds’ initial adaptation.
Each trial during the adaptation conditions commenced
with 1.5-second top-up adaptation, followed by 500
ms blank screen, before the 500 ms test stimulus, and
then a 500 ms intertrial interval, as shown in Figure 1C.
Initial and top-up adapting stimuli all modulated at 2
Hz, starting from zero contrast and including a whole
number of cycles so that the 2 Hz modulation also
terminated at zero contrast.

A small circular fixation marker was displayed
in the center of both adapting and test stimuli (dot
diameter 0.1°). This fixation dot was usually dark
gray (a 40% decrement from the background), but to
ensure they were fixating, participants were required
to respond with a button press whenever they saw
the fixation dot change to darker (80% decrement) or
lighter (20% increment). These changes were always
transient (200 ms duration) and occurred during a
quarter of the trials (randomly selected). The exact
onset of the increment or decrement varied randomly
within the trial, but during the adaptation conditions
the fixation change always occurred during the adaptor
period of the trial. For the no-adaptation conditions,
trials including a fixation change were repeated, and
data from trials where a fixation change occurred were
discarded from the analysis. We evaluated participants’
performance on this task using their hit rate (HR;
proportion of fixation-change present trials with a
button press) and false alarm rate (FA; proportion of
fixation-change absent trials with a button press) to
calculate sensitivity (dʹ) using the MATLAB function
norminv (inverse of the cumulative normal distribution),
where

d ′ = norminv (HR) − norminv (FA)

Across participants, the average dʹ was 0.97 (standard
error 0.15).

MRI methods: Retinotopic and functional
localizers

All magnetic resonance imaging took place at the
McConnell Brain Imaging Centre, McGill University,
Montreal, Canada. For each participant we acquired
two high-resolution three-dimensional whole head T1
images using an MP-RAGE sequence (TI = 900 ms,
TR = 2300 ms, TE = 3.41 ms, 1.0 mm3 resolution), and

averaged these two images to generate the participant’s
anatomical template. Functional T2* MR images were
acquired on a 3T Siemens MAGNETOM Prisma
system (Siemens Medical Solutions, Malvern, PA,
USA) with 32-channel head coil. Gradient-echo pulse
sequences were used to measure blood oxygenation
level-dependent (BOLD) signal as a function of time.
We identified the visual cortical regions V1, V2, V3,
V3A/B, LO1/LO2 and hV4 for each participant using
rotating wedge stimuli and expanding and contracting
concentric rings (Engel, Rumelhart, Wandell, Lee,
Glover, Chichilnisky, & Shadlen, 1994; Sereno, Dale,
Reppas, Kwong, Belliveau, Brady, Rosen, & Tootell,
1995), standard definitions of these areas (Brewer,
Liu, Wade, & Wandell, 2005; Goddard et al., 2011;
Larsson & Heeger, 2006), and the foveal confluence
(Schira, Tyler, Breakspear, & Spehar, 2009). To localize
areas VO1, VO2, and hMT+ we used data from
the retinotopic mapping scans in conjunction with
functional localizers for VO (Mullen et al., 2007) and
hMT+ (Huk, Dougherty, & Heeger, 2002). Full details
of our retinotopic mapping procedures, including
scanning protocols, data preprocessing and area
definition have been described previously (Goddard
et al., 2019).

MEG data analysis: Preprocessing and source
reconstruction

Preprocessing, forward modeling and source
reconstruction of MEG data were performed using
Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy,
2011, http://neuroimage.usc.edu/brainstorm). For each
participant’s template anatomical (a high-resolution
MRI image), we used the automatic segmentation
processes from Freesurfer 6.0 (Dale, Fischl, & Sereno,
1999; Fischl, Sereno, & Dale, 1999) to define the
gray/white matter and pial/gray matter boundaries.
Using Brainstorm, we imported the output of
Freesurfer and created a 15,000-vertex model of each
participant’s cortical surface. For each block of trials
in the MEG data, we aligned the participant’s cortical
surface model to the median measured marker coil
locations for that block by aligning the head shape
data from the MRI with the head shape relative to the
marker coils, as recorded with the pen digitizer. For
each functional run, we generated a forward model
for each model by applying a multiple spheres model
(Huang, Mosher, & Leahy, 1999) to the participant’s
cortical surface model at this measured head
location.

Functional data were preprocessed in Brainstorm
with notch filtering (60, 120, and 180 Hz), followed by
bandpass filtering (0.2–200 Hz, using the Brainstorm
default of an even-order linear phase finite impulse
response filter). We preprocessed data from the empty
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room recording using identical protocols, then used
the output to estimate the noise covariance for the
session. Cardiac and eye blink artifacts were removed
from functional data using signal space projection:
cardiac and eye blinks events were identified using
default filters in Brainstorm, manually verified, then
used to estimate a small number of basic functions
corresponding to these noise components, which were
removed from the recordings (Uusitalo & Ilmoniemi,
1997). From these functional data we extracted an
epoch of data for each trial: from −100 to 1000 ms
relative to stimulus onset, and down-sampled to 100
Hz. Using the noise covariance estimate, regularized
using the median eigenvalue, we applied a minimum
norm source reconstruction to this trial data.

For classification analyses we generated three
datasets using each participant’s functionally defined
cortical areas. In the “early visual cortex” (EVC) region
of interest, we included data from all vertices located
within areas V1, V2 and V3, while the “ventral visual
cortex” (VVC) region of interest included areas hV4,
VO1 and VO2, and “dorsolateral visual cortex” (DVC)
included areas V3A/B, LO1, LO2 and hMT+. We found
very similar adaptation effects across these Regions of
Interest (ROIs), which we believe most likely reflects
the failure of the source reconstruction to completely
isolate responses from these adjoining cortical regions,
although it is possible that the adaptation effects
reported below are genuinely very similar across these
cortical areas. Because there is little difference across
ROIs, in most cases below we show data from EVC
only, but equivalent figures for VVC and DVC are
included in Supplementary Material.

MEG data analysis: Contrast response functions
estimated from response amplitude

We measured the amplitude of stimulus-evoked
responses from the MEG data for each stimulus type
(each color, at each contrast), from each session, both
before and after adaptation. For each trial’s evoked
response, we averaged across source locations and
subtracted the average activity across all blank trials
(from the same session and adaptation condition),
before taking the root mean square across trials to
obtain a measure of the average evoked response.
Examples of these measures are shown in Figure 2.

To reduce these average timecourses to a single
measure of response amplitude, we fit a simple model of
the stimulus response from 50 to 600 ms after stimulus
onset as the sum of two gamma probability density
functions (f (t)), with shape and rate parameters α and
β, given by:

f (t; α, β ) = βαtα−1e−βt

� (α)

In total, the model had seven free parameters:
the delay, dispersion, and scaling (maximum) of the
first and second peaks (three parameters per peak),
and a response offset added to every time point. We
used this simple double-peaked model to capture the
shape of the responses to the counter-phasing stimuli,
where each stimulus trial included one cycle (as shown
in Figure 1). For each participant, we fit this model
separately to the average root mean square response to
every stimulus contrast in each adaptation condition,
including separate no-adapt conditions for each
adaptor, to ensure we were always comparing adapted
and unadapted responses that were collected during
the same session. From the model fits we obtained an
overall measure of response amplitude in each case
using the maximum minus minimum fitted value. We
also fit the model to each blank trial condition to
obtain a baseline measure (an estimate of response
amplitude when the model is fit to non-stimulus-related
fluctuations), which we subtracted from trial response
amplitudes.

MEG data analysis: Contrast response functions
estimated from classification-based analyses

In addition to the response amplitude estimates,
we also used classification analyses in combination
with multidimensional scaling (MDS) as an alternative
measure of contrast response responses. We repeated
the analysis for each 10 ms bin to capture how trial
responses changed over time. For each data set (data
from a single ROI from a single participant), we reduced
the data using Principal Component Analysis (PCA),
then used this reduced data in the classification analyses.
Out of the total 15,000 sources in each participant’s
head model, the EVC ROI included an average of 725
sources (standard deviation [SD] = 177), the VVC ROI
included an average of 390 sources (SD = 74), and the
DVC ROI included an average of 449 sources (SD =
110). We reduced these with PCA and retained data
from the first n components, which accounted for 99.9%
of the variance, for the classification analysis (mean =
31.5, SD = 4.9 for EVC; mean = 29.8, SD = 5.4 for
VVC; mean = 41.3, SD = 6.5 for DVC).

Within each of nine combinations of stimulus (Ach,
RG, and BY) and adaptor type (Ach, RG, and BY)
we conducted a series of pairwise classifications. We
trained classifiers to discriminate each pair of unique
trial types (2 phases × 5 contrast levels, including blank
trials × 2 adaptation states = 20 trial types). In each
case, we trained classifiers to discriminate between two
categories of trial and tested on held-out data. We
report results obtained with a linear support vector
machine (SVM) classifier, using the MATLAB function
fitcsvm with “KernelFunction” set to “linear.” For all
analyses we expressed average classifier accuracy in dʹ (a
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Figure 2. Example data for one participant under one adaptation condition (adapt Achromatic). The leftmost and center columns have
the same plotting conventions and show data following no adaptor and an achromatic adaptor respectively, with the stimulus
contrast over the same timescale shown in dashed green lines of the uppermost plot (the two lines show the two stimulus phases). In
the remaining plots of the leftmost and center columns, responses to each test stimulus (A, achromatic; B, RG; C, BY) are plotted at
each contrast (four contrasts in descending order from upper to lower plots, with response during blank trials in lowermost plots).
Thin lines give average responses and thicker lines give best-fitting model response to the same data. The model was the sum of two
gamma functions to capture the two-peaked responses to the counter-phasing stimuli (each trial included one full cycle). Model fits
to blank trials were included to estimate baseline response. Raw data are shown from −100 to 600 ms relative to stimulus onset, but
only data from 50 to 600 ms after stim onset were fit with the model. From these model fits, we summarized response amplitude at
each contrast using the maximum minus minimum, minus the same measure for baseline (blank trials). Response amplitudes for this
subject/adaptation condition are shown in the rightmost plots.

unit-free measure of sensitivity). Chance classification
performance yields dʹ = 0.

These pairwise comparisons resulted in a
dissimilarity matrix for each time bin (as illustrated
in Figure 4), where each cell of the matrix was defined
by classifier accuracy. We used the pattern of classifier
accuracy across all 20 trial types to estimate contrast
response. Reasoning that variation in responses to
these trial types should be well captured by a single
dimension of variation (corresponding to contrast
response), we used multidimensional scaling (MDS)
to reduce each dissimilarity matrix to a distribution
of 20 values along a single dimension. Each MDS
was completed using the MATLAB function mdscale
with “criterion” set to “metricstress” (minimizing the
stress normalized with the sum of squares of the
dissimilarities). From the MDS solution, we used
the distance of trial type from the average of the

blank trial types as an alternate measure of response
amplitude, in this way constructing contrast response
functions for individual 10ms time bins. An example
pair of contrast response functions generated by this
process (for adapt Ach and no adapt trials) is shown in
Figure 4. To investigate the effect of adaptation
on the shape of the contrast response functions,
we fit each contrast response function (obtained
from the MDS solution) using a Naka-Rushton
equation (as implemented by the Psychtoolbox function
ComputeNakaRushton, with three input variables).

Statistical analyses

From the response amplitude estimates described
above we obtained a single measure of the contrast
response function for each stimulus color under each
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adaptation condition. From the classification-based
analyses, we obtained similar contrast response
functions, but with finer temporal resolution, because
we performed the analysis within each 10 ms time
bin. In both cases we summed the responses across
the four non-zero contrasts to obtain a single measure
of response amplitude, equivalent to the area under
the curve of the relevant contrast response function.
To estimate the effect of each adaptor on each test
stimulus, we compared the stimulus responses with and
without adaptation.

We tested the statistical significance of each
adaptation effect using a series of one-sided t-tests
(df = 5). For each test stimulus, we also used a
series of one-sided paired t-tests (df = 5) to test
whether within-stimulus exceeded cross-stimulus
adaptation for the remaining stimulus colors. For
all t-tests we corrected for multiple comparisons
using a false discovery rate (FDR) correction of q <
0.05 (Benjamini & Hochberg, 1995). We also used a
Bayes factor analysis, an alternative to the traditional
frequentist approach (Kass & Raftery, 1995; Morey &
Wagenmakers, 2014). A Bayes factor compares evidence
for competing hypotheses; here we report where there
is moderate (BF > 3) or strong (BF > 10) evidence in
favor of the alternate hypothesis, or at least moderate

(BF < 1/3) evidence in favor of the null hypothesis.
We implemented all Bayes Factor analyses using a
MATLAB package (Krekelberg, 2021).

Results

We used MEG to measure the effects of within- and
cross-stimulus contrast adaptation on neural responses
to radial sinusoidal gratings of achromatic (Ach), L-M
(RG) or S-cone isolating (BY) contrast, and we have
analyzed the data using both changes in response
amplitude and a classification method in conjunction
with MDS.

Response amplitude analysis

In this section, we report the effects of contrast
adaptation on response amplitude, averaged across
early visual cortex. We estimate response amplitude
using a simple model fit, as illustrated for an example
participant and adaptor condition in Figure 2.

Average contrast response functions, across all
participants and for each stimulus condition, are
shown in Figure 3 (equivalent figures with data from

Figure 3. Effect of adaptation on average response across all adaptation conditions. Each pair of plots (line plot and scatterplot) show
data for a single test stimulus (A, Ach; B, RG; C, BY) and a single adaptation condition (see titles at the top of each column). Line plots
follow the conventions of those in the rightmost plots of Figure 2. The shaded regions give 95% confidence intervals of the
between-subject mean (n = 6). The scatter plots show the same data condensed to an area under the curve (i.e., the sum of the
responses at each non-zero stimulus contrast) for the no adapt condition (x-axis) versus for the adapt condition (y-axis). In the scatter
plots, each marker shows data for a single subject. Results of statistical analyses of these adaptation effects are shown in Figure 7C,
where data from the scatter plots are replotted. Cases of within-stimulus adaptation are highlighted with bold lines (line plots) and
filled markers (scatterplots).

Downloaded from jov.arvojournals.org on 10/12/2022



Journal of Vision (2022) 22(10):16, 1–19 Goddard, Shooner, & Mullen 9

Figure 4. Illustration of classification and MDS-based approach for an example participant, in one condition (achromatic test stimulus,
during the achromatic adaptation session): the same data as shown in Figure 2. (A) Average response to the 20 unique achromatic or
blank trial types during this session, with line colored according to whether or not they were presented during adaptation.
(B) Average classifier performance for pairwise discriminations of each of the 20 trial types. (C) Dissimilarity matrix (DSM) for a single
time bin (t = 195 ms, maximum classifier performance, highlighted with red dashed lines in A and B). Trial types are labeled according
to adaptation condition and contrast level (nA/A = no adapt/adapt, C0 = blank, C4 = max contrast), each label includes two
rows/columns of the same contrast/adapt condition but different phases. (D) Contrast response functions obtained from MDS
(applied to the DSM in C). Each circle corresponds to a response to an Ach stimulus of contrast given by the x-axis (square icons are
blank trials: average location was used to define the zero response). Lines show the averages of the two phases of each trial type
(circles of same color at each contrast). For the blank trials the two phases were identical.

ventral and dorsal visual cortex are shown in the
Supplementary Material). For all stimuli (Ach, RG and
BY), we found evidence of within-stimulus adaptation,
but weak or no evidence of cross-stimulus adaptation.
Across conditions, responses to Ach stimuli showed
more evidence of saturating within the range of
stimulus contrasts, whereas responses to RG and BY

stimuli increased with contrast across the entire range
of stimulus contrasts.

Classification analysis

As an alternative analysis, which did not rely on
fitting response curves across the entire duration of
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Figure 5. Effect of adaptation on overall level of response to Ach (A), RG (B) and BY (C) stimuli over time, as measured using area
under the MDS-based contrast response functions. Left plots show stimulus response during no-adapt and within-stimulus
adaptation. Right plots show the difference (Adapted response minus unadapted response) for both within-stimulus (filled lines) and
cross-stimulus (dashed lines) adaptation. Shaded regions indicate the 95% confidence intervals of the between-subjects mean. Below
the data in the right plots, results of the Bayes factor analysis, applied to data from each 10 ms bin, are shown. Colored circles show
times where that adaptor reduced the response to the test stimulus, whereas colored triangles show times where that cross-stimulus
adaptor induced a smaller effect than the within-stimulus adaptor. For both circles and triangle, small gray markers show times where
there was at least moderate evidence (BF < 0.33) in favor of no effect.

the stimulus-induced response, we used classification
methods in conjunction with MDS to obtain a measure
of contrast response function for each 10 ms time
bin, as described in the Methods above and illustrated
in Figure 4. Because this method is sensitive to
stimulus-related information carried by the pattern
of information across a region of interest (here, early
visual cortex), it potentially detects subtler differences
in the neural responses across stimulus contrast that
may not be present in the overall amplitude of the
response, or its variability across trial-types. This is
illustrated in Figure 4, where greater variation in
average responses to trials of different types (Figure 4A)
does not predict times of greatest classifier performance
(Figure 4B).

This analysis yielded estimates of contrast response
functions for each time bin. We used these to consider
two aspects of the effects of contrast adaptation on
the responses to these stimuli: the effect of adaptation
across the timecourse of the stimulus-induced response,
and the effect of each adaptation condition on the
shape of the contrast response function.

The effect of adaptation across the timecourse of
the stimulus-induced response is shown in Figure 5

(equivalent figures with data from ventral and
dorsal visual cortex are shown in the Supplementary
Material). Consistent with the effects of adaptation
on response amplitude (Figure 3), here we found that
within-stimulus adaptation tended to be greater than
cross-stimulus adaptation across all stimulus types.
For BY stimulus responses, the effects of adaptation
were consistent across both peaks of the response
to the counter-phasing stimulus, and both peaks
included time bins where there were strong effects
(BF > 10) of within-stimulus adaptation exceeding
cross-stimulus adaptation. For RG stimulus responses,
there were again within-stimulus adaptation effects
at both peaks, but weaker evidence from the Bayes
Factor analysis that these exceeded cross-stimulus
adaptation. For the Ach stimulus, there was stronger
within-stimulus adaptation around the first peak
compared with the second peak of the response, but
this was primarily driven by a larger response to the first
peak than the second in the no adaptation condition,
rather than a stronger response to the second peak
in the adapted condition. The response to the Ach
stimulus showed robust within-stimulus adaptation
effects, but weak evidence that this within-stimulus
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Figure 6. Effect of adaptation on the shape of the contrast response functions. Here we fit Naka-Rushton equations to the average
(n = 6) MDS-based contrast response for each 10 ms time bin. (A) Example average contrast responses (dots) for within-stimulus
adaptation, and Naka-Rushton fits (lines) for data from around the first peak (175–275 ms): see Supplementary Material for data
across each 10 ms time bins (as movies). (B, C) The best fitting Naka-Rushton equations were summarized by two measures: their
maximum response (B) and the contrast at which they reached half their maximum (C). These summary values are plotted with one
marker for each time bin (every 10 ms from 50 ms to 600 ms), for no adapt versus adapt; the color of the marker indicates the
adaptation condition, and filled markers highlight cases of within-stimulus adaptation.

adaptation was stronger than the cross-stimulus
adaptation.

The effects of adaptation on the shape of the
contrast response functions are shown in Figure 6
(equivalent figures with data from ventral and dorsal
visual cortex are shown in the Supplementary Material).
Single-neuron studies have shown that adaptation can
lead to a multiplicative scaling down of responses
(a response-gain effect) and also a rightward shift
of the contrast-response curve to higher contrast (a
contrast-gain effect) (Albrecht, Farrar, & Hamilton,
1984; Bonds, 1991; Sclar, Lennie, & DePriest, 1989). To
test for both of these effects we described each contrast-
response function in terms of its maximum response,

as well as the contrast at which it reached half the
maximum. The latter measure would not be influenced
by a purely response-gain effect even in cases of strong
adaptation. In each case of within-stimulus adaptation,
we found that curves reached half-maximum at higher
contrasts in the adapted conditions, ruling out purely
response-gain changes. We also found stimulus-specific
reductions in maximum response for all stimuli. This
pattern of effects could result from adaptation inducing
either pure contrast-gain or a combination of response-
and contrast gain changes.

To facilitate comparison with the psychophysical
measurements, we acquired previously (Goddard
et al., 2019), we re-plot these in Figure 7, along with
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Figure 7. Comparison of adaptation effects across psychophysical and MEG measurements in EVC. (A, B) Changes in psychophysical
detection thresholds (A) and points of subjectively equal contrast (B): data replotted from Goddard et al. (2019), Figure 7. (C, D) MEG
adaptation effects based on differences between the area under the contrast response function of the test stimulus without
adaptation and during adaptation, where the contrast response functions were measured using univariate (C) and classifier/MDS
(D) metrics (MDS: responses were averaged across 50-600 ms to match epoch for amplitude-based analysis). In each plot, the circular
markers show values for each participant (A, B: n = 10; C, D: n = 6), along with the mean (thick black line). Black markers above the
data indicate cases of significant adaptation effects, whereas red markers indicate whether adaptation effects were greater in the
within-stimulus compared to cross-stimulus conditions, in each case FDR corrected (** q < 0.01, * q < 0.05) or approaching
significance (+ p < 0.05, not FDR corrected). Results with moderate (BF > 3) or strong effects (BF > 10), are highlighted with green or
cyan squares respectively. Cases with at least moderate evidence in favor of a null effect (BF < 0.33) are indicated with a grey square.
See Supplementary Table S1 for exact statistical values.

summaries of the adaptation effects measured with
MEG using amplitude-based response differences
(Figure 7C) and the responses differences across
the average (50-600 ms, matching the epoch for

amplitude-based analysis) of the MDS-based contrast
response measures (Figure 7D). For each combination
of adapting and test stimulus, we used a one-sided
t-test to test whether the observed adaptation effect
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Figure 8. Comparison of adaptation effects using both MEG measurements in VVC (A, B) and DVC (C, D), measured using univariate
(A, C) and classifier/MDS (B, D) metrics. Other plotting conventions are as in Figure 7.

was greater than zero. Across tests we applied a false
discovery rate correction for multiple comparisons
(Benjamini & Hochberg, 1995). For all stimuli there
was significant within-stimulus adaptation (except
for the BY stimulus using the MDS-metric, which
was only marginally significant: p < 0.05, uncorrected
for multiple comparisons). Across all stimuli and
both analysis method the only case of cross-stimulus
adaptation that was significant was the Ach adaptor on
the RG test stimulus (q < 0.05).

Analyses equivalent to those in Figures 7C–D were
also performed for data from the VVC and DVC
regions of interest, and the results of these are shown in
Figure 8. Full details of all statistical testing are given
in the Supplementary Material.

Discussion

We usedMEG to measure the effect of adaptation on
contrast response for achromatic, isoluminant red-green
(RG) and S-cone isolating (BY) stimuli. Previously,
we found that, while behavioral adaptation effects for
these stimuli were highly selective, BOLD adaptation
showed strong cross-stimulus adaptation, with little
evidence of selectivity (Goddard et al., 2019; Mullen
et al., 2015). Here we found that MEG adaptation
effects were dissimilar to the BOLD adaptation
effects, with an absence of strong cross-stimulus
adaptation, but showed good agreement with the
selective psychophysical effects of contrast adaptation.
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MEG contrast adaptation reflects perceptual
effects

Overall, the effects of contrast adaptation on the
MEG responses were in good agreement with the
perceptual effects. MEG adaptation effects, like the
behavioral effects, showed strong selectivity, with weak
or absent cross-stimulus adaptation. This pattern of
selectivity is also consistent with previous VEP results
showing selectivity of chromatic contrast adaptation
effects within the isoluminant plane (Duncan et al.,
2012). Unlike in previous studies using VEPs to measure
chromatic and achromatic contrast adaptation, here
we included cross-adaptation conditions to measure
interactions between achromatic and chromatic stimuli,
and we measured the effects of adaptation on test
stimuli of a range of contrasts.

In measuring responses across a range of stimulus
contrasts, we found a pattern of within-stimulus
adaptation. Although contrast-gain was evident for
both chromatic and achromatic stimuli, there was
some evidence suggesting that response gain played
a larger role for the achromatic stimuli than for
chromatic stimuli, with greater evidence of a reduction
in the maximum response (Figure 6). However, this
difference may not reflect a genuine difference in
contrast adaptation effects, because responses to the
(unadapted) achromatic test stimuli showed saturation
at higher contrasts, whereas responses to the chromatic
stimuli did not. Although our present data cannot
distinguish between pure contrast gain and combined
contrast and response gain for chromatic stimuli, future
work using a different range of test contrasts may be
able to differentiate between these.

The pattern of cross-stimulus adaptation effects
on MEG contrast adaptation are in the direction of
selectivity in each case, as in the behavioral effects of
adaptation, although these differences did not reach
statistical significance in all cases. In our previous
psychophysical work (Figures 7A, 7B), we measured
adaptation using two types of task, threshold detection
and suprathreshold contrast matching, and we found
that for both tasks within-stimulus adaptation was
greater than cross-stimulus adaptation revealing
selectivity for all stimulus combinations, consistent
with previous literature (e.g., Krauskopf et al., 1982;
Webster & Mollon, 1994). We also found some
task-dependent differences. For detection thresholds,
achromatic detection showed some cross-adaptation
by the chromatic adaptors, which induced small but
significant elevation of achromatic detection thresholds,
whereas the achromatic adaptor did not affect detection
of the chromatic stimuli. Conversely, for suprathreshold
perceived contrast measurements, the chromatic
test stimuli showed some cross adaptation by the
achromatic adaptor as well as the other chromatic
adaptor, with small but significant changes following

adaptation, whereas achromatic perceived contrast
was unaffected by the chromatic adaptors. It is not
clear what the origins of these difference are and
why achromatic detection shows less selectivity than
achromatic perceived contrast.

Although the MEG data do not show clear evidence
favoring either of these patterns of cross-stimulus
adaptation effects, the two significant cross-stimulus
adaptation effects (Ach adaptor on RG test and RG
adaptor on BY test) are consistent with the pattern
of effects for suprathreshold contrast judgements.
Moreover, the fact that the contrast values for adaptor
and test stimuli in MEG are all suprathreshold
make it more likely that the MEG data would
reflect the behavioral results for suprathreshold
contrast perception than detection thresholds.
Overall, our MEG adaptation results show selective
effects that are broadly similar to the behavioral
data.

An aim of our present study was to compare contrast
adaptation effects across different visual cortical areas,
which we divided into early (V1, V2, V3), ventral (hV4,
VO1, VO2), and dorsal (LO, V3A/B, hMT+). Human
fMRI studies show the high responsiveness of ventral
areas to color (e.g., Brewer et al., 2005; Goddard et al.,
2011; Lafer-Sousa, Conway, &Kanwisher, 2016;Mullen
et al., 2007). Mullen et al. (2015) found evidence of
selective adaptation to L/M isolating stimuli in ventral
area VO of the ventral visual cortex, along with some
selectivity for achromatic contrast in the dorsal cortical
regions. AlthoughMEG signals cannot be resolved with
the spatial precision of fMRI, source reconstruction can
be improved by including a forward model based on the
participant’s individual anatomy from an MRI image,
as here, and previous studies have reported distinct
effects in early and ventral visual areas (e.g., Bartsch
et al., 2017). Despite this, we found very similar contrast
adaptation effects across early, ventral and dorsal visual
cortex (see Supplementary Material). This may reflect
broadly similar contrast adaptation effects across visual
cortex, but given the spatial uncertainty of MEG, we
cannot rule out signal leakage between our regions of
interest, which could have obscured any inter-regional
differences.

A novel method for time-resolved
measurement of contrast response functions

We have introduced a new tool for measuring
how contrast response functions change over
time, with fine temporal resolution. Methods such
as MEG, electroencephalographic (EEG), and
electrophysiological recordings allow millisecond
resolution of neural activity, but traditional analysis
methods often use metrics, such as response amplitude
or response delay, that reduce data to a one or two
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values per condition, as in the response amplitude
analysis used here, where we obtained a single estimate
of the contrast response function for each condition.
More recently, classification-based analyses, applied
within short time bins, have been applied to MEG
and EEG recordings (e.g., Carlson, Hogendoorn,
Kanai, Mesik, & Turret, 2011; Cichy, Pantazis, &
Oliva, 2014; Goddard et al., 2016) and to multi-unit
electrophysiological recordings (e.g., Goddard et al.,
2017; Zavitz & Price, 2019), which is one method that
allows the response dynamics to be explored, and to
examine differences between conditions over time,
from stimulus onset until the end of the trial. MDS
has previously been applied to dissimilarity matrices as
an exploratory method, to visualize the organizational
principles present in the neural representation of the
stimuli (e.g., Kriegeskorte, Mur, Ruff, Kiani, Bodurka,
Esteky, Tanaka, & Bandettini, 2008).

However, here we are not applying MDS to discover
an unknown response dimension but using it to
reconstruct the relationship between a prespecified
feature dimension (stimulus contrast) and response. We
see the primary benefit of this approach as increasing
signal to noise relative to other analyses. Comparing the
response to each stimulus with the response to a blank
screen using a difference (as in the response amplitude
analysis) or with a classification analysis (equivalent to
a single row of the dissimilarity matrix in Figure 4C)
does not make use of the information captured by
the pairwise classification analyses of each stimulus.
Conversely, our MDS approach constructs the contrast
response functions using information present across
each pairwise comparison in the dissimilarity matrix.
We found that this method yielded robust estimates
(i.e., response functions that typically monotonically
increased with contrast) even when based on data
from single 10 ms time bin (see Figure 5, and videos
in Supplementary Material). In our experiment we
found that the effects of adaptation were remarkably
consistent across the duration of the stimulus-induced
response, but because it allows for the contrast response
to be estimated within short time bins of data, this
approach could yield useful insights into how the
population contrast response changes over time in
future MEG/EEG or multi-unit electrophysiological
experiments.

Implications for understanding BOLD
adaptation effects

The strong but unselective adaptation found in our
previous BOLD adaptation experiments, especially for
achromatic and S-cone isolating stimuli, was surprising
given the psychophysical evidence for selective
adaptation measured psychophysically under broadly
similar conditions (Mullen et al., 2015; Goddard et al.,

2019). Here, using MEG measurements, we found
strong within-stimulus contrast adaptation was evident
from the earliest part of the stimulus-induced response
in all areas (see Figure 5). Cross-stimulus adaptation
effects tended to be weaker, and within-stimulus
adaptation significantly exceeded cross-stimulus
adaptation in some, but not all cases. Overall, this
suggests that the strong cross-stimulus BOLD
adaptation effects observed previously do not reflect
adaptation of the same mechanisms as captured by
behavioral responses or MEG.

There were differences between the experimental
design used in our previous fMRI work and in the
current MEG study, but we think it unlikely that these
differences account for the discrepancy in results.
In particular, the temporal parameters of the fMRI
designs were chosen to suit the slow temporal dynamics
of the BOLD response: test stimuli had the same
spatiotemporal contrast modulations but were grouped
into 18-second blocks of a contrast discrimination
task (rather than single trials, as in the psychophysical
and MEG experiments). Additionally, in the fMRI
design the no-adapt and adapt trials were interleaved
within each experimental session, whereas in the
psychophysical and MEG experiments all no-adapt
trials were collected prior to any adaptation. These
paradigm differences may have resulted in some
differences in the adaptation effects measured across
modalities, but they cannot account for the main
discrepancy in the selectivity of adaptation. The
paradigm differences could have reduced the overall
level of contrast adaptation in the BOLD experiments,
but the low level of selectivity observed in the fMRI
experiments were not driven by low adaptation effects
overall, but by surprisingly strong cross-stimulus
adaptation, especially in the case of Ach/BY stimulus
pairs.

In our previous work (Goddard et al., 2019), we
discussed other instances where fMRI adaptation
has failed to reveal selectivity when it might be
expected (e.g. Boynton & Finney, 2003; Murray
et al., 2006). We do not believe it likely that BOLD
adaptation effects are partly driven by adaptation of
the hemodynamic response, since work on the effects
of adaptation on neurovascular-coupling suggest that
BOLD measurements will tend to underestimate,
rather than overestimate, neural adaptation effects
(Larsson & Harrison, 2015; Moradi & Buxton, 2013).
Instead, we speculated that the strong cross-adaptation
effects might be driven by the fact that BOLD signals
reflect the summed activity of large numbers of both
excitatory and inhibitory neurons (both driver and
modulator neurons) and includes non-spiking activity
(Logothetis, 2008). Divisive normalization is considered
widespread in cortical function (e.g., Heeger, 1992),
and BOLD adaptation would reflect the effects of
adaptation on driver and modulator spiking and
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non-spiking activity, respectively, whereas spiking
output and perception would correspond to the ratio
or balance of these mechanisms. It is unclear how
the spiking and non-spiking activity of driver and
modulator neurons, and their ratio would be reflected
in the MEG signals. Signals measured with MEG are
believed to be driven primarily by magnetic induction
arising from ionic currents, including post-synaptic
potentials (Baillet, 2017). However, unlike the BOLD
adaptation effects, the contrast adaptation effects
measured with MEG show a similarly high degree of
selectivity as the perceptual effects. This demonstrates
that the divergence between BOLD adaptation effects
and perceptual adaptation effects is at least partly
specific to the signals captured in the BOLD signal.

Conclusions

We found thatMEGmeasures of contrast adaptation
were closely aligned with the highly selective perceptual
effects of adaptation, unlike previously reported BOLD
adaptation effects. We introduced a new method for
measuring contrast response functions for each time
sample in an MEG dataset, which could be applied in
future work to explore how contrast response functions
change over time after stimulus onset.

Keywords: MEG, fMRI, BOLD, visual cortex,
multivariate pattern classification analysis (MVPA),
multi-dimensional scaling (MDS), contrast adaptation
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