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Face detection from patterns of shading and shadows: The role of overhead 
illumination in generating the familiar appearance of the human face 
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A B S T R A C T   

Face detection in human vision relies on a stereotypical pattern of visual features common to different faces. How 
are these visual features generated in the environment? Here we investigate how characteristic patterns of 
shading and shadows that occur across the face act as a cue for face detection. We use 3D rendering to isolate 
facial shading under simulated lighting conditions, comparing the broad patterns of contrast that occur across the 
face when light arrives from different angles. We find that human performance in discriminating faces from non- 
face objects using these contrast patterns depends strongly on the lighting direction. In particular, light arriving 
from above the brow tends to facilitate face detection – consistent with the statistics of real-world lighting en
vironments, in which light commonly arrives more strongly from above. Indeed, in a further experiment, we find 
that asymmetries in lighting that occur in complex and naturalistic lighting environments produce contrast 
patterns across the face that facilitate face detection. These effects occurred independent of the lighting direction 
relative to the viewer, suggesting that cues to face detection emerge from the interaction between face 
morphology and vertical asymmetries in lighting direction, independent of the viewer’s knowledge or expec
tations about lighting direction. Comparison with the performance of an image classifier suggests that the effects 
of lighting direction partly reflect differences in image information that result from the interaction between 
shape and illumination, as well as face detection in human observers being better-tuned to the pattern of shading 
and shadows that occurs across an upright face that is lit from overhead.   

The human face is one of the most familiar visual patterns that we 
encounter. Much can be gleaned from a person’s face – who they are, 
their age, their emotions, and their focus of attention. Our visual system 
is specialized to extract this kind of information, but visual processing of 
faces first requires the ability to reliably detect faces in our environment. 
The challenge of face detection for both human- and machine-vision 
systems is that we all look different, and our appearance varies from 
moment-to-moment with changes in viewing angle, illumination, and 
expression (Adini, Moses, & Ullman, 1997). Face detection relies, 
therefore, on matching visual input against an internal template of 
features that are common to different faces, such as the basic spatial 
configuration of face features that can be captured in a simple contrast 
pattern (Fig. 1a; Johnson, 2005; Tsao & Livingstone, 2008). Critical 
features of this type appear to drive visual behaviour in newborns and 
adults (Farroni et al., 2005; Tomalski, Csibra, & Johnson, 2009), 
contribute to the tuning of ‘face cells’ in primate visual cortex (Ohayon, 
Freiwald, & Tsao, 2012; Tsao & Livingstone, 2008) and underlie 
perceptual phenomena like face pareidolia (’t Hart, Abresch, & 

Einhauser, 2011; Omer, Sapir, Hatuka, & Yovel, 2019). Similarly, in 
machine vision, algorithms have been developed that are able to 
perform face detection by exploiting a set of coarse intensity differences 
that appear relatively stable across images of faces (Sinha, 2002; Viola & 
Jones, 2001), such as a darker band across the eyes and lighter band 
across the upper cheeks. (For a review of the wider range of approaches 
to face detection used in computer vision, see Hasan, Ahsan, Abdullah- 
Al-Mamun, Newaz, & Lee, 2021). 

What underlies the critical features of a face? One component is the 
material properties of the facial surface; for instance, coarse intensity 
differences around the eyes and mouth occur partly because the eye
brows, irises, and lips reflect light of a different intensity to the sur
rounding skin (Fig. 1b). Another component may be the interaction 
between shape and lighting direction. Shading and shadows are a near- 
ubiquitous feature of the faces we see in daily life. Under directional 
lighting, the recessed eye sockets, protruding nose, and prominent jaw 
of the human face contribute specific patterns of contrast across the 
facial surface. Are these patterns of shading and shadows a key feature of 
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what defines a face to the human visual system? 
Pertinently, our visual system has evolved and developed in sensory 

environments with strongly directional lighting (e.g., Dror, Willsky, & 
Adelson, 2004). Light from the sun and sky arrives from above us, and 
indoor environments are commonly designed with light sources in the 
ceiling rather than the floor. The adaptation of our visual system to these 
conditions influences our basic experience of the world, including how 
we perceive the shape of shaded objects (Morgenstern, Murray, & 
Harris, 2011; Ramachandran, 1988). In the context of face perception, it 
has been recognized for some time that faces lit from above tend to 
appear more familiar to us – we can find it difficult to recognize people 
we know when we see them lit from below (Enns & Shore, 1997; 
Johnston, Hill, & Carman, 1992), and this is presumably why it is 
traditional to hold a flashlight below one’s face when telling a scary 
story! The adaptation of our visual system to environments where light 
arrives more strongly from above may also play a role in face detection: 
Farroni et al. (2005) report that newborn babies have a preference to 
look towards faces lit from above rather than below, suggesting that 
from a very young age we may be “tuned to the particular distribution of 
dark and light patches characteristic of a face illuminated from above” 
(p.17248). There is also some evidence that the detectability of faces is 
modulated by lighting direction in adults (during interocular suppres
sion; Stein, Peelen, & Sterzer, 2011), but the role of naturalistic illu
mination in providing cues that drive face detection in the human visual 
system is yet to be examined in detail. 

A key phenomenon that is revealing about face detection is the 
perception of two-tone images or ‘Mooney faces’ – drawings or photo
graphs of faces that are reduced to broad patterns of light and dark, but 
are often still recognizable as faces (Mooney, 1957). It is striking that, 
despite the amount of information that is abolished by this manipula
tion, enough critical features are seemingly retained, whether key con
tours or patterns of contrast, to match with an internal template of face 
structure (Cavanagh, 1991; Cavanagh & Leclerc, 1989; Moore & Cav
anagh, 1998), highlighting the minimal nature of cues sufficient for face 
detection. As well as conveying a vivid impression of a face, two-tone 
images can elicit activation in the fusiform face area (Kanwisher, 
Tong, & Nakayama, 1998) and attract visual attention in newborns (Leo 
& Simion, 2009). However, the viewer’s expectations about lighting 
direction may impact on their ability to detect faces in these images; 
Brodski, Paasch, Helbling, and Wibral (2015) report that two-tone im
ages consistent with light arriving from above the viewer are more easily 
recognized as faces, including when a face originally lit from below is 
oriented upside down (hence, consistent with light arriving from above 
the viewer). This speaks to an ‘expectation for light from above’ 
affecting how readily we derive object shape from patterns of light and 
dark. 

In the current study, we aim to test how simple visual features that 
enable face detection result from shading and shadows that occur across 
the face under directional lighting. We isolate patterns of luminance that 
arise specifically from the interaction between lighting direction and the 
morphology of internal face features, by rendering 3D face models with 
uniform surface reflectance and converting these to two-tone images that 
capture broad transitions between light and dark. These differ from two- 
tone images produced from photographs, where image structure 

depends partly on surface reflectance (e.g., the irises, eyebrows, skin, 
lips, and hair varying in the intensity of light they reflect) in addition to 
shading and shadows. Across three experiments, we test the ability of 
human observers to discriminate faces from unfamiliar non-face objects 
using contrast patterns produced by shading and shadows, and test 
whether performance depends on the angle that light falls across the 
face. 

In considering the role of illumination in face detection, an important 
distinction can be made between how lighting direction interacts with face 
shape to generate a prototypical sensory pattern (e.g., shadows below 
the brows) and how the viewer’s expectations about lighting direction aid in 
recovering 3D shape more generally. If there is an advantage in face 
detection for sensory patterns that are consistent with top-down light
ing, this might occur either because (i) face detection relies on a tem
plate of visual features that is more closely tuned to the appearance of an 
upright human face under overhead lighting, or (ii) the visual system is 
generally better able to infer the shape of an object when the retinal 
image is consistent with light arriving from above the observer. The 
former puts emphasis on the lighting direction relative to the face, while 
the latter puts emphasis on the lighting direction relative to the 
observer. These frames of reference often align under ecological viewing 
conditions, but are dissociable for faces presented in a non-upright 
spatial orientation (Fig. 2). 

In Experiments 1–3, we test whether face detection in human ob
servers, when presented with contrast patterns produced by shading and 
shadows, depends on the lighting direction relative to the face. We 
manipulate the orientation of the images to test whether the pattern of 

Fig. 1. (a) Face detection is enabled by sensory features that are com
mon to different faces, such as a basic spatial pattern of brighter and 
darker regions. (b) These features are produced in part by the material 
properties of the facial surface; for example, the eyebrows, lips, skin, 
sclerae and irises reflect light of different intensity because they consist 
of different materials. However, when a 3D model of a face is rendered 
with uniform material properties (right), the pattern of shading and 
shadows that remains is still recognizable as a face. This pattern arises 
from the interaction between lighting direction and face morphology.   

Fig. 2. The interaction between image orientation and lighting direction. (a) 
Faces are commonly seen in an upright orientation, with stronger lighting 
arriving from above the horizon. (b) When faces are lit from underneath, their 
appearance is altered by a different pattern of shading and shadows. (c, d) 
When the same images are presented upside-down, the lighting direction 
relative to the face is dissociable from the lighting direction relative to the 
observer. When describing our results, we use the terms ‘light from above’ and 
‘light from below’ to refer to the lighting direction relative to the face, rather 
than the lighting direction relative to the observer. 
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contrast produced by top-down lighting (relative to the face) provides an 
advantage even when inconsistent with light arriving from above the 
observer. Experiment 1 also tests whether face detection in contrast 
patterns produced by shading and shadows depends on the contrast 
polarity of the stimulus, and Experiment 2 tests whether performance 
depends on the intensity threshold used to define the pattern of contrast 
isolated in two-tone images. Experiment 3 examines how patterns of 
contrast produced across the face in complex and naturalistic lighting 
environments facilitate face detection. Finally, we report a set of image 
analyses that provide insight into the visual features associated with 
light falling on the face from above versus below and test whether the 
amount of low-level visual information available in the images differs 
with the direction of lighting (measured using an image classifier). 

1. Experiment 1 

1.1. Method 

1.1.1. Participants 
Data collection for all experiments was conducted online, with vol

unteers recruited via an online platform (Prolific; https://www.prolific. 
co/). Participants were eligible to participate in the study if they re
ported normal or corrected-to-normal vision, fluency in English, and UK 
nationality/residence. Participants were asked to use a desktop or laptop 
computer, and the browser Google Chrome. A minimum browser win
dow resolution of 800 × 600 pixels was required to run the task. Each 
participant provided informed consent and was paid £8. The study was 
approved by the UNSW ethics committee. The sample for Experiment 1 
included 37 adults with a mean age of 40 years (SD = 13 years) and 
gender split 23:14 (female:male). As we had no strong expectation about 
the size of effects under investigation, the target sample size (35–40) was 
chosen prior to data collection to fit within a range commonly used in 
behavioural research with a perceptual task. 

1.1.2. Stimulus production 
Face images were rendered under controlled lighting conditions in 

3D graphics software, Blender 2.90 (The Blender Foundation, Amster
dam, The Netherlands). Image production was controlled using custom 
scripts in Python 3.5.3 (Python Core Team., 2017). Rendering was 
performed using Cycles, which is a physically-based rendering engine 
that simulates the path of light rays within a 3D environment and the 
interaction of this light with surfaces. In general, there are two key 
properties that determine the shading visible across the surface of an 
object: the angle that light arrives on the object (relative to the observer) 
and the 3D shape of the object. To ensure a realistic face shape, we used 
high-resolution models of facial geometry created by scanning real 
people. These models were produced by a 3D-scanning company, Ten24 
(https://ten24.info/3d-scanning/) using a multi-camera array and 
photogrammetry. Models of six different people were used. The face 
models were rendered in Blender with Lambertian reflectance, uniform 
grey across the object surface. This meant that variations in intensity in 
the image arose specifically from the interaction between object shape 
and lighting direction (i.e., shading and cast shadows) rather than dif
ferences in reflectance across the face surface. 

The rendering environment included a single light source. This was a 
60 × 60 cm plane that emitted light towards the face, positioned at a 
distance of 1.5 m. The horizontal angle of the light source was either 
directly in front of the face, 45◦ left or 45◦ right. The vertical angle of the 
light source was 45◦ above or below the face. The faces were rendered 
from the perspective of a camera positioned 50 cm away, centered on 
the point in between the two eyes. The faces were oriented towards the 
camera, or rotated 30◦ left or right. The purpose of including different 
face models, horizontal orientations, and horizontal lighting directions 
was to increase variability in the image set and help prevent the 
participant forming strong expectations about the kind of face-pattern 
they were looking for. See Fig. S1 in Supplemental Material for 

examples of face renders produced under different simulated lighting 
directions. 

A set of non-face objects were also created in Blender. The non-face 
objects were ellipsoids matched to the approximate height and width of 
the face models. The surface had the same uniform-grey, Lambertian 
reflectance as the face models. The 3D shape of the surface was modu
lated using a fractal Perlin noise texture that was mapped to the object 
surface and displaced the local geometry. This resulted in smooth 
modulation of the surface shape (i.e., protrusions and indentations) 
analogous to facial features. The object geometry was mirrored around 
the vertical midline. Overall, the renders of non-face objects shared a 
number of basic visual and structural properties with human faces, 
including symmetry around the vertical midline, larger-scale variations 
in shading that occur across an elliptical object under directional 
lighting, and finer-scale variations in shading due to smooth local 
modulations in surface shape. As there were six face identities, we 
created six non-face objects by using different noise patterns to modu
late the geometry of the ellipsoid surface. The non-face objects were 
rendered under the identical conditions as the faces, including in ver
tical and horizontal lighting direction and object rotation. See Fig. S2 in 
Supplemental Material for examples of rendered non-face objects. 

Further image processing was performed in MATLAB 2019b (Math
works) to convert the grayscale renders to two-tone images (Fig. 3). The 
rendered images were low-pass filtered with a 2D Gaussian kernel (SD =
5 pixels; image size = 945 pixels square), which helps to produce clean 
transitions between darker and lighter regions after thresholding. The 
images were cropped with an elliptical mask to limit the visible area of 
the face to internal features. This meant that discriminating faces from 
non-face objects depended on internal face features, rather than the 
presence of a recognizable external contour formed by the ears, hair, and 
neck. To convert a grayscale image to a two-tone image requires 
selecting an intensity threshold that divides the image into darker and 
lighter regions. The choice of threshold is somewhat arbitrary, as there 
are different ways that one could define what the darker and lighter 
parts of an image are. The main concern in the current study was to use 
an objective and replicable method that could be applied in the same 
way across all images, leading to a fair comparison between images 
rendered under different lighting directions. We used an algorithmic 
method developed by Otsu (1979) that determines an optimal threshold 
based on the histogram of image grey-levels. This method uses a crite
rion that maximises the ‘between-class variance’ of pixels above and 
below the threshold, sensitive to both the mean grey level of pixels in 
each group and the number of pixels in each group. Greyscale images in 
Experiment 1 were encoded in an 8bit, non-linear intensity scale, and 
pixels within the elliptical crop mask were used when determining the 
threshold. The optimal threshold was determined separately for each 
image. To create a two-tone image, pixels of higher intensity than the 
threshold were set to white and all other pixels set to black. In Experi
ment 2, we test how results generalize across different methods for 
setting the threshold when creating two-tone images. 

In addition to manipulating the direction of lighting used when 
rendering the face models, we also manipulated the image orientation 
and contrast polarity of the two-tone images. Image orientation was 
manipulated by rotating the image by 180◦. Contrast polarity was 
manipulated by switching the black and white regions of the two-tone 
images. 

1.1.3. Experimental task 
Participants completed a face detection task, requiring discrimina

tion between face and non-face stimuli (Fig. 4). The task was accessed 
from the participant’s web browser and created using the JavaScript 
library jsPsych (de Leeuw, 2015) and JATOS (Lange, Kuhn, & Filevich, 
2015). In each trial, a two-tone image was presented and participants 
judged whether the image depicted a human face or not. Each image was 
presented for approximately 100 ms. (For discussion of stimulus dura
tion accuracy in jsPsych, see Kuroki, 2020). Responses were made by 
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pressing one of two keys on the keyboard, with no time limit. Between 
trials, a fixation cross was presented for approximately 1000 ms. The 
image size varied randomly across trials, such that the region of the 
image within the elliptical crop mask was presented on screen 3.9–6.5 
cm wide and 5.8–9.7 cm high. A calibration performed prior to the 
experiment helped to ensure that the images were presented at the same 
size across participants despite differences in monitor size. This involved 
each participant adjusting the size of an on-screen box to match the 
standard size of a credit card; this measurement of pixels-to-cm was used 
in the script to scale the presented images. Participants were instructed 
that the faces might be oriented normally or upside down. Trials were 
presented in a different random order for each participant, with all 
conditions interleaved. Participants completed 20 randomly-selected 
practice trials before beginning the task. The stimuli shown during 
practice trials were repeated in the main experiment. 

1.1.4. Analysis 
There were three independent variables used in the analysis. These 

were vertical lighting direction (light from above vs. below), image 
orientation (upright vs. upside down) and contrast polarity (natural vs. 
reversed). We compared face detection performance across these con
ditions using a three-way repeated-measures ANOVA. There were 108 
trials for each condition, amounting to 864 trials in total. This included 
an equal number of faces and non-face objects, such that a measure of 
sensitivity in discriminating between faces and non-faces (d’) could be 
calculated for each condition. It is useful to assess face detection per
formance in terms of sensitivity in discriminating faces from non-face 
objects, rather than accuracy in classifying the face images, as the 
latter could be driven by a general tendency to classify all images as 
faces. As described in the Stimulus Production section, trials within each 
condition varied in the identity of the face (or the identity of the non- 
face object), its horizontal rotation, and the horizontal lighting direc
tion, but differences in performance across these stimulus dimensions 
were not analysed. Fig. S3 in Supplemental Material illustrates that the 
main effect of interest, the effect of vertical lighting condition, was 
apparent across head rotation and horizontal lighting conditions. 

Fig. 3. Two-tone images produced under different, simulated lighting conditions. 3D-scanned models of human faces were rendered with a light source positioned 
45◦ above the face (top row) or 45◦ below the face (bottom row). The face models were rendered with uniform reflectance to isolate the pattern of shading and 
shadows across the face. The renders were cropped and low-pass filtered, then converted to two-tone images using Otsu’s method for threshold selection. This 
procedure isolated the broad transitions between lighter and darker regions caused by shading and shadowing across the internal features of the face. 

Fig. 4. Participants performed a face detection task, requiring discrimination between face and non-face stimuli. Two-tone images were presented briefly, depicting 
either a face or an abstract non-face object rendered under identical lighting conditions. 

C.J. Palmer et al.                                                                                                                                                                                                                               



Cognition 225 (2022) 105172

5

1.2. Results 

1.2.1. Lighting direction 
Face detection was strongly facilitated by light from above the face 

(Fig. 5). This was reflected in a main effect of lighting direction on 
sensitivity in discriminating faces from non-face objects, F(1,36) = 202, 
p < .001, η2

p = 0.85. For faces with natural contrast polarity, perfor
mance was better for images rendered with light arriving from above the 
brow of the face both when these images were presented upright, t(36) 
= 15, p < .001 (two-tailed), Cohen’s d = 2.4, and when presented upside 
down, t(36) = 12, p < .001 (two-tailed), Cohen’s d = 2.0. This indicates 
that the lighting direction relative to the face drives performance inde
pendent of the lighting direction relative to the observer. In other words, 
the particular pattern of shading and shadows that occurs when light 
arrives from above the brow (e.g., shadows within the eye sockets and 
below the nose) facilitates face detection regardless of whether this 
lighting direction is above or below from the perspective of the observer. 

1.2.2. Image orientation 
Face detection performance was consistently higher when images 

were presented upright rather than upside down, reflected in a main 
effect of image orientation, F(1,36) = 37, p < .001, η2

p = 0.51. The 
interaction between lighting direction and image orientation was not 
significant, F(1,36) = 1.7, p = .20, η2

p = 0.05, suggesting that the spatial 
inversion effect (i.e., better performance for faces presented upright 
compared to faces presented upside down) occurred similarly for faces 
lit from above and faces lit from below. 

1.2.3. Contrast polarity 
Face detection performance for images with reversed contrast po

larity is shown in Fig. S4 in Supplemental Material. In the three-way 
ANOVA that included both natural- and reverse-polarity images, there 
was no significant main effect of polarity, F(1,36) = 0.77, p = .39, η2

p =

0.02. However, there was a significant interaction between polarity and 
lighting direction, F(1,36) = 40, p < .001, η2

p = 0.53. Post-hoc tests 
indicated that for images lit from above, reversing the polarity slightly 
reduced performance in discriminating faces from non-face objects, t 
(36) = 4, p < .001, mean difference in d’ = − 0.23. For images lit from 
below, reversing the polarity slightly increased performance, t(36) =
− 2.5, p < .05, mean difference in d’ = 0.15. The three-way interaction 

between lighting direction, polarity, and image orientation was not 
significant, F(1,36) = 0.69, p = .41, η2

p = 0.02, suggesting that the 
interaction between polarity and lighting direction was similar for up
right and upside-down images. Overall, these results suggest that the 
advantage for detecting faces that are lit from above derives partly from 
a familiar pattern of contrast polarity (e.g., darker regions in the eye 
sockets and below the nose). However, the effect of lighting direction on 
performance observed for natural-polarity images was also strongly 
apparent for polarity-reversed images. This occurred both when the 
polarity-reversed images were presented upright, t(36) = 12, p < .001 
(two-tailed), Cohen’s d = 1.9, and when presented upside down, t(36) =
9, p < .001 (two-tailed), Cohen’s d = 1.6. This demonstrates that the 
spatial distribution of contrast differences contributes strongly to the 
advantage for detecting faces lit from above compared to faces lit from 
below, independent of contrast polarity. 

There was also a significant interaction between polarity and image 
orientation, F(1,36) = 16, p < .001, η2

p = 0.31. Across the task, perfor
mance was lowest overall for images that were presented in both an 
unfamiliar orientation and reverse polarity (Fig. S4c). 

2. Experiment 2 

In Experiment 2, we test how different methods for deriving a 
contrast pattern from face images influence face detection performance. 
For faces with uniform reflectance, there is a straightforward relation
ship between lighting direction and image intensity: the brightest re
gions of the image occur where the surface of the face is angled more 
directly towards the light source, while the darkest regions of the image 
occur where the surface is angled more obliquely to the light source or 
receives cast shadows (Fig. 6a). One can create two-tone images where 
the pattern conveyed by black regions of the image captures only the 
darkest shadows that fall across the face or, alternatively, captures all 
but the very brightest surfaces of the face. Hence, thresholding the 
image at different intensities captures different types of contrast pro
duced by the interaction of lighting direction with face morphology. 

2.1. Method 

2.1.1. Participants 
The sample for Experiment 2 included 38 adults with a mean age of 

Fig. 5. The effect of lighting direction on face detection in images with natural contrast polarity. (a) Two-tone images produced from face models that were rendered 
in a 3D graphical environment with a light source 45◦ above or below the face. (b) Face detection was strongly facilitated when light arrived from above the face. 
Chance performance in discriminating faces from non-faces is indicated by a d’ of zero. (c) When images are presented upside-down, both the face orientation and the 
direction of lighting are flipped relative to the observer. (d) Face detection in upside-down images was strongly facilitated when light arrive from ‘above’ the face, 
even though the image is consistent with light from below the observer. In these figures, lighting direction is labelled relative to the face rather than relative to the 
observer, such that the images shown for each condition in panel d are the same images as in the corresponding condition of panel b, but flipped upside down. 
Barplots show the mean ± 1 standard error. Boxplots show the median, interquartile range, and full range of the data excluding scores that lie beyond the limits of the 
box by more than 1.5 times the interquartile range. *** p < .001. 
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39 years (SD = 15 years) and gender split 23:15 (female:male). There 
was no overlap with the sample from Experiment 1. In Experiment 1, we 
observed a strong effect size for the difference in performance between 
images lit from above versus below. A power analysis indicated that only 
a small sample (n = 5) would be necessary to achieve >95% power in 
detecting an effect of this magnitude. However, we chose to maintain a 
similar sample size to facilitate comparison across experiments. 

2.1.2. Stimulus production 
Stimuli were produced using similar methods as Experiment 1, but 

with a parametric manipulation of the threshold used to convert gray
scale renders into two-tone images (Fig. 6a). Because the greyscale im
ages were produced in the same rendering environment, a given image 
grey level corresponded to the same physical intensity of light across all 
images. This meant that we could apply an intensity threshold globally 
across images, dividing the darker and lighter regions of each image 

based on a specific physical intensity, and vary this threshold para
metrically. For this purpose, in Experiment 2, greyscale intensities were 
encoded in a linear, 32-bit format, then thresholded at four different 
intensity levels. The thresholds were set at 12.5%, 25%, 50%, and 75% 
of the average maximum intensity across images. This approach com
plements Experiment 1, in which the threshold used to produce the two- 
tone images was optimised on a per-image basis using Otsu’s method 
rather than applied globally across images. 

2.1.3. Experimental task and analysis 
Participants completed the same face detection task as in Experiment 

1, but with different images presented. There were three independent 
variables used in the analysis. This included vertical lighting direction 
(light from above vs. below), image orientation (upright vs. upside 
down) and threshold level (12.5% vs 25% vs 50% vs 75% of the average 
maximum intensity). We compared face detection performance across 

Fig. 6. Does face detection in simple contrast patterns depend on the intensity threshold that divides light and dark regions? (a) Each face render was thresholded at 
four different levels, expressed here as a percentage of the average maximum intensity across images. At the highest threshold level, the white regions of the two-tone 
image correspond only to the very brightest regions of the face (the regions of the face surface that are angled most directly towards the position of the light source in 
the 3D graphical environment). The top row shows a face lit from the upper-left, and the bottom shows a face lit from the lower-left. (b) Face detection tended to be 
higher for two-tone faces lit from above, but this trend reversed for the highest threshold level. (c) When the images were presented to participants upside down, the 
difference in performance between lighting conditions was in the same direction as for the upright images, indicating that the lighting direction relative to the face 
drives performance independent of the lighting direction relative to the observer. (d) The spatial inversion effect (i.e., difference in performance between upright 
versus upside-down images) differed across lighting directions and threshold levels. Barplots show the mean ± 1 standard error. Boxplots show the median, 
interquartile range, and full range of the data excluding scores that lie beyond the limits of the box by more than 1.5 times the interquartile range. *** p < .001; ** p 
< .005. 
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these conditions using a repeated-measures ANOVA. There were 54 
trials for each condition, amounting to 864 trials in total. These included 
an equal number of faces and non-face images. Trials in each condition 
also varied in the identity of the face (or non-face object), its horizontal 
rotation, and the horizontal lighting direction. Compared to Experiment 
1, half the number of face and non-face identities were used to maintain 
the same total number of trials. 

2.2. Results 

2.2.1. Lighting direction and threshold level 
Consistent with the results of Experiment 1, face detection was 

strongly facilitated by light from above the face. This was reflected in a 
main effect of lighting direction on sensitivity, F(1,37) = 179, p < .001, 
η2

p = 0.83. However, the effect of lighting direction depended on the 
threshold level, with a significant interaction between these factors, F 
(3,111) = 138, p < .001, η2

p = 0.79. In particular, sensitivity was higher 
for top-lit faces compared to bottom-lit faces for the threshold levels of 
12.5%, 25%, and 50%, but higher for bottom-lit faces for the 75% 
threshold level (Fig. 6b). Paired samples t-tests indicated that sensitivity 
was significantly different between lighting conditions for each 
threshold level. This was the case for both upright images (p < .001 for 
all; Cohen’s d = 2.29, 2.10, 0.64, − 1.21, respectively, across threshold 
levels) and upside-down images (p < .005 for all; Cohen’s d = 1.53, 1.88, 
0.79, − 0.54). The reversal of performance trends across lighting di
rections for two-tone images produced by thresholding at a high in
tensity level (75%) compared to those produced by thresholding at 
lower intensity levels (12.5%, 25%, 50%) suggests a difference in in
formation useful for face detection that is carried in the pattern formed 
by the very brightest regions of the original face images compared to the 
information carried by the broader contrast between lighter and darker 
regions of the faces. (This point is discussed further in the Discussion 
section Dependence on Intensity-Threshold Level). For each threshold level, 
the lighting condition with the highest sensitivity in the upright images 
(i.e., top-lighting for threshold levels 12.5%, 25%, and 50%, and 
bottom-lighting for threshold level 75%) also had the highest sensitivity 
for upside-down images (Fig. 6b and c). Thus, consistent with Experi
ment 1, the direction of lighting relative to the face determined per
formance, independent of the direction of lighting relative to the 
observer. 

2.2.2. Image orientation 
Face detection performance was consistently higher when images 

were presented upright rather than upside down, reflected in a main 
effect of image orientation, F(1,37) = 81, p < .001, η2

p = 0.69. However, 
the strength of the spatial inversion effect (i.e., the difference in per
formance between images presented upright versus upside down) 
depended on both the lighting direction and threshold level (Fig. 6d). 
This was reflected in a significant interaction between image orientation 
and threshold level, F(3,111) = 8.3, p < .001, η2

p = 0.18, and a three-way 
interaction between image orientation, threshold level, and lighting 
direction, F(3,111) = 19, p < .001, η2

p = 0.34. In Fig. 6d, one can see that 
the spatial inversion effect tended to be greater for top-lit faces 
compared to bottom-lit faces at lower threshold levels, and greater for 
bottom-lit faces compared to top-lit faces at the highest threshold level. 
Overall, the tendency for spatial inversion to reduce performance sug
gests that the mechanisms facilitating face detection for top-lit faces (at 
lower thresholds) and bottom-lit faces (at higher thresholds) are sensi
tive in both cases to the typical upright configuration of a face. 

3. Experiment 3 

In experiments 1 and 2, faces were rendered in a 3D-graphical 
lighting environment that contained a single light source angled 45◦

above or below the face. In real-world environments, illumination 
typically arrives on an object from all directions at once, due to the 

presence of multiple primary light sources, extended light sources (e.g., 
the sky), and inter-reflections from other surfaces present in the envi
ronment. In Experiment 3, we test whether shading patterns that occur 
across a face in more complex and naturalistic simulated lighting envi
ronments facilitate face detection. 

3.1. Method 

3.1.1. Participants 
The sample for Experiment 3 included 40 adults with a mean age of 

47 years (SD = 13 years) and gender split 22:18 (female:male). There 
was no overlap with the samples from experiments 1 or 2. Data from 
three additional participants were excluded from the analysis because 
these participants reported technical difficulties in completing the on
line task. The sample size was chosen to match experiments 1 and 2. 

3.1.2. Stimulus production 
Complex lighting environments were simulated using a set of high- 

dynamic range illumination (HDRI) maps captured from real-world 
environments. These are panoramic images that represent the in
tensity of light arriving at a particular point in space from all directions, 
i.e., spanning 360◦ horizontally and 180◦ vertically. These are projected 
onto a rectangular surface for display purposes in Fig. 7a, and were used 
as spherical illumination environments in Blender. Six different HDRI 
maps were used, captured from environments with both natural and 
artificial light sources, and at different times of day. This included a 
forest, an open field on a sunny day and in the evening, a residential 
garage, an apartment building corridor, and an urban street. The HDRI 
maps were produced by aifosDesign (https://www.aifosdesign.se/kateg 
ori/hdri/). 

The HDRI maps tended to have stronger illumination arriving from 
angles above the horizon compared to angles below the horizon (Fig. S5 
in Supplemental Material). This is consistent with the general observa
tion that light tends to come more strongly from above in real-world 
environments (e.g., Dror et al., 2004). Faces were rendered with the 
illumination environment either in a natural vertical orientation, with 
the sky or ceiling above the face model and camera, or with the vertical 
axis inverted, such that the sky or ceiling was below the face model and 
camera (Fig. 7b). The horizontal orientation of the HDRI maps was set 
such that a dominant light source present in the environment (e.g., the 
sun or a nearby artificial light source) was angled 30◦ to the left or right 
of the face. 

Greyscale images of the face and non-face models were rendered in 
Blender in a linear, 32-bit format, then low-pass filtered and cropped in 
MATLAB as described for Experiment 1. Real-world environments vary 
dramatically in their absolute level of luminance (e.g., a sunny day vs. a 
dim indoor environment), which we accounted for by normalizing each 
image. This was done by taking pixels from the face region visible within 
the elliptical crop mask, subtracting their mean intensity and dividing by 
3 standard deviations. This results in the relevant pixels in each image 
having a mean intensity of 0 and standard deviation of one-third. The 
images were then scaled and clipped to an 8-bit range, and a threshold 
was determined from the grey-level histogram for each image using the 
same method as Experiment 1. The resulting two-tone images thus 
brought out contrast between darker and lighter regions of the face in
dependent of the absolute mean intensity. This is based on the logic that 
the human visual system will typically adjust to the prevailing illumi
nation conditions, bringing out the contrast that exists within the pre
sent environment. 

3.1.3. Experimental task and analysis 
Participants completed the same face detection task as in the two 

previous experiments, but with different images presented. There were 
two independent variables used in the analysis. These were the vertical 
orientation of the lighting environment (natural vs. inverted) and image 
orientation (upright vs. upside down). We compared performance across 
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these conditions using a repeated-measures ANOVA. There were 216 
trials for each of these conditions, resulting in 864 trials in total. This 
included an equal number of faces and non-face objects. Trials in each 
condition also varied in the identity of the face (or non-face object), its 
horizontal rotation, and the horizontal orientation of the lighting 
environment. 

3.2. Results 

3.2.1. Vertical orientation of the lighting environment 
Face detection was strongly facilitated by a natural orientation of the 

lighting environment relative to the face (Fig. 7c and d). This was re
flected in a main effect of lighting orientation on sensitivity in 
discriminating faces from non-face objects, F(1,39) = 176, p < .001, η2

p 
= 0.82. Performance was better for images rendered with a natural 
orientation of the lighting environment both when these images were 
presented upright, t(39) = 11.9, p < .001 (two-tailed), Cohen’s d = 1.88, 
and when presented upside down, t(39) = 8.6, p < .001 (two-tailed), 
Cohen’s d = 1.36. Thus, consistent with experiments 1 and 2, the di
rection of lighting relative to the face determined performance, inde
pendent of the direction of lighting relative to the observer. 

3.2.2. Image orientation 
Face detection performance was better when images were presented 

upright rather than upside down, reflected in a main effect of image 
orientation, F(1,39) = 62, p < .001, η2

p = 0.62. There was also a signif
icant interaction between the orientation of the lighting environment 
and the image orientation, F(1,39) = 15, p < .001, η2

p = 0.29. The spatial 
inversion effect (i.e., the difference in performance between images 
presented upright versus upside down) was stronger for images consis
tent with a natural orientation of the lighting environment relative to 
the face compared to an inverted lighting environment, t(39) = 4, p <
.001, Cohen’s d = 0.63, mean difference = 0.35 (SE difference = 0.09). 

4. Image analysis 

Distinct patterns of contrast and edges occur when face models are 

rendered under lighting that arrives more strongly from above versus 
below. These are illustrated in Fig. 8, averaged across the two-tone 
images used in each experiment. There is a clear qualitative distinc
tion between the patterns of shading and shadows that occur across the 
face under different lighting conditions, with darker regions within the 
eye sockets and below the nose tending to occur when faces are lit from 
above, even when averaging across images that differ in head direction 
and horizontal lighting direction, and even for images that are consistent 
with complex simulated lighting environments in which light arrives 
from all directions at once (but with naturally-occurring asymmetries in 
the magnitude of illumination across vertical and horizontal angles). 

Fig. 9a shows the same image analysis for face stimuli presented in 
Experiment 2 when separated by threshold level. The ‘reversal’ in per
formance trends across lighting conditions that we observed in Experi
ment 2 (for two-tone images thresholded at a high intensity level) 
provided a further opportunity to visualize the image features that vary 
with human performance. We focused on the 25% and 75% threshold 
conditions, as peak performance occurred in these conditions for images 
consistent with lighting from above and images consistent with lighting 
from below, respectively (Fig. 6b). In particular, for each lighting con
dition, we subtracted the edge density map computed from images in the 
lower-performance condition from the edge density map computed from 
images in the higher-performance condition (Fig. 9b). The resulting map 
of edge density differences indicates the regions of the two-tone images in 
which edges tend to occur when performance is better compared to 
when performance is poorer, independently for each lighting condition. 
There is a notable similarity between the features associated with an 
advantage in face detection for the light-from-above condition and the 
light-from-below condition – in both lighting conditions, better perfor
mance is associated with edges occurring at the level of the eyes, nos
trils, and lips (Fig. 9b). 

To test the extent to which low-level image differences might 
contribute to categorization performance across the three experiments, 
we used a classification analysis to measure whether the face and non- 
face images were more distinguishable in some conditions than others. 
Classifier accuracy provides a measure of how reliably the face and non- 
face images can be categorized in each condition (e.g., when lit from 

Fig. 7. Facial shading patterns produced in complex lighting environments that were simulated using 3D graphical rendering. (a) Face models were rendered using 
high-dynamic range illumination maps recorded from a number of different real-world environments. Thresholding the face images isolated the broad transitions 
between lighter and darker regions. (b) Faces were also rendered in lighting environments that were inverted along the vertical axis, i.e., with the sky or ceiling 
below the face. (c) Face detection performance was higher for contrast patterns produced in naturally-oriented lighting environments. (d) When the same contrast 
patterns were presented to participants upside down, face detection performance was higher for contrast patterns consistent with lighting environments oriented 
naturally relative to the face, even though this is upside down relative to the observer. Barplots show the mean ± 1 standard error. Boxplots show the median, 
interquartile range, and full range of the data excluding scores that lie beyond the limits of the box by more than 1.5 times the interquartile range. *** p < .001. 
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above vs below) based on low-level image information. 

4.1. Method 

To approximate the information in each image that would be 

accessible to the early visual system, we first filtered each image using 
the early levels of the ‘HMAX’ model of object recognition (Riesenhuber 
& Poggio, 1999; Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 2007). 
Specifically, we used the output of the ‘C2’ or ‘complex composite’ layer 
of the HMAX model, with response properties designed to approximate 
those of some V4 neurons (Serre et al., 2007). This is the fourth layer of 
the model, preceded by S1, C1, and S2 layers. We used the Matlab 
implementation of this model available from https://maxlab.neuro. 
georgetown.edu/hmax.html (accessed March 2021). Each stimulus 
image (face and non-face objects) was 945 pixels square. The first layer 
of the HMAX model (S1) uses a bank of orientation-tuned filters: we 
defined filters at each of 4 equally spaced orientations (horizontal, 
vertical and +/− 45 degrees from vertical), and each of 19 receptive 
field sizes (23 to 131 pixels across, in 6 pixel steps). Each filter was odd- 
symmetric, with spatial frequency that scaled with size so that each 
included 1.5 cycles of a sinusoidal modulation. For remaining model 
parameters we used the default values, including a C1 layer with 8 scale 
bands (1 to 17 in steps of 2), that had spatial pooling ranges of 8 to 22 (in 
steps of 2), and the universal set of patches supplied with the Matlab 
HMAX model. Using these universal patches yields 400 responses at 
each of 8 scales, for a total of 3200 C2-layer responses per image. We 
generated HMAX C2-layer responses for each image used in the exper
iments with human observers. For each experiment, we reduced the 
dimensionality of the dataset of model responses (originally 3200 di
mensions) by applying principal components analysis (PCA), imple
mented using Matlab function pca, and retaining the scores from the first 
n components that accounted for 99% of the variance across images 
(Experiment 1: n = 757; Experiment 2: n = 749; Experiment 3: n = 741). 

We trained classifiers on a series of face vs non-face discriminations 
using the PCA scores of HMAX model responses. In every case, we used a 
naïve Bayes classification, implemented using the Matlab functions 
‘fitcdiscr’ and ‘predict’ with variable ‘type’ set to ‘diaglinear’. We repeated 
these classification analyses with alternative discriminant functions 
(‘linear’ and ‘diagQuadratic’) and obtained qualitatively similar results 
(data not shown), suggesting that classifier performance reflects differ
ences in image information rather than being specific to a particular 
classification method. We were particularly interested in whether im
ages of different lighting direction and/or threshold level varied in the 
availability of low-level information that could be used to distinguish 
face from non-face images, so we confined classification analyses to 
images with upright orientation and natural contrast polarity. For each 
experiment, the total set of images was partitioned according to identity 
(6 face and 6 non-face identities for Experiment 1; 3 face and 3 non-face 
identities for Experiments 2 and 3; 864 images in total in each experi
ment). We trained classifiers to discriminate face from non-face images 
using all except one pair of identities (one face and one non-face object), 
then we evaluated the classifier on how accurately it could predict the 
category of the held-out images. We repeated this procedure several 
times, so that each image was included once in the test data set, and 
report the classifier sensitivity in discriminating face and non-face im
ages across runs. By training the classifiers on the output of the HMAX 
model we were seeking to reduce the likelihood that classifier accuracy 
could be based on some spurious feature that was unlikely to contribute 
to human performance. For example, if we instead gave the classifier the 
intensity of each pixel in the image it would be possible that the classifier 
could learn that the presence of white at a particular pixel was predictive 
of face vs non-face, but this feature would be very unlikely to drive 
human performance. Similarly, by always testing classifier performance 
on held out pairs of identities, we reduced the chance that robust clas
sifier performance could be based on very specific local features that 
were unique to the particular identities in the training set. 

To test for statistical significance, we used bootstrapping to generate 
a null distribution of classifier performance. We divided the images into 
pairs of identities (each pair consisting of one face and one non-face 
object). For each bootstrapped dataset, we generated a training data
set by randomly shuffling the face/non-face category labels within each 

Fig. 8. Visualising image structure of two-tone faces presented in Experiment 1 
(a), Experiment 2 (b) and Experiment 3 (c). For each experiment, the images in 
the left-hand column show mean pixel intensity for upright faces with natural 
contrast polarity, averaged across identities, head rotation, and horizontal 
lighting direction. These images illustrate how the pattern of contrast across the 
face produced by shading and shadows tends to differ when the face is lit from 
above versus below (Experiment 1–2) or when rendered in naturally-oriented 
versus inverted lighting environments (Experiment 3). The images in the 
right-hand columns are heatmaps of where edges occur in the images. Edges 
were identified using the Sobel method implemented in MATLAB, for upright 
faces with natural contrast polarity. The heatmaps show the proportion of 
images containing an edge, after spatial smoothing with a 2D Gaussian filter 
(SD = 5 pixels). 

C.J. Palmer et al.                                                                                                                                                                                                                               

https://maxlab.neuro.georgetown.edu/hmax.html
https://maxlab.neuro.georgetown.edu/hmax.html


Cognition 225 (2022) 105172

10

pair of identities. We repeated our classification analysis as for the 
original analysis, except that we used the shuffled-label data as training 
data, and the original-label data to test classifier performance. We 
repeated this process 10,000 times, yielding a null distribution of clas
sifier performance for each case, used to define 95% confidence in
tervals. We also used the results of these bootstrapping analyses to 
generate null distributions of 10,000 difference values (lighting angle 
from above versus below) for each comparison. We report p-values for 
each comparison based on the proportion of these null absolute differ
ence values that exceeded the observed absolute difference (two-sided 
tests). 

4.2. Results 

Classifier performance is shown in Fig. 10. In the image sets for all 
three experiments, the ability of the classifier to learn to distinguish 
faces from non-face objects differed depending on the direction of 
lighting. In experiments 1 and 2, human performance (reported in 
Figs. 5 and 6) trended in the same direction as classifier performance 
across lighting conditions. This included the advantage for lighting from 
above observed at the lowest threshold level in Experiment 2 trending in 
the reverse direction at the highest threshold level. This suggests that 
human performance in these experiments might be accounted for partly 
by differences in low-level information available in the two-tone faces lit 
from above versus below. However, for the images used in Experiment 3, 
classifier performance across lighting conditions differed in the opposite 

direction to that found for human observers. In other words, humans 
performed better in detecting faces in images consistent with light 
arriving more strongly from above (rather than below) even when there 
was less low-level information available in the former. This suggests that 
prior familiarity with faces lit from above plays a role in determining 
human performance. 

5. Discussion 

There is a characteristic form to the human face – to put it unflat
teringly, we have sunken eye sockets, a protruding nose, and pouty lips. 
These features of the face produce distinctive patterns of shading and 
shadows under directional lighting, patterns that we are likely accus
tomed to seeing even if not explicitly aware of them. In the present 
study, we isolated the broad patterns of contrast that occur across faces 
due to shading and shadowing effects, by 3D-rendering face models with 
uniform reflectance under different simulated lighting conditions, then 
thresholding the images. Human observers were able to detect faces in 
these contrast patterns, including those consistent with both simple and 
complex lighting environments. Performance was sensitive to the typical 
upright configuration of the face and depended partly on natural 
contrast polarity but moreso on the spatial distribution of contrast in
dependent of polarity. Perhaps most interestingly, face detection per
formance was strongly facilitated by contrast patterns consistent with 
light arriving from above the brow (with one exception, discussed 
below). This advantage for light from above was driven by how lighting 

Fig. 9. Visualising image structure of two-tone faces presented in Experiment 2, separated by threshold level. (a) Face images were converted to two-tone images by 
thresholding at one of four intensity levels, expressed here as a percentage of the average maximum intensity across images. For each threshold level, the images in 
the left-hand column show mean pixel intensity of the two-tone images generated from upright faces, averaged across identities, head rotation, and horizontal 
lighting direction. The images in the right-hand columns are heatmaps of where edges occur in the images. (b) To help visualize the image features that support face 
detection, edge density was compared between conditions that varied in behavioural performance (Fig. 6b). In particular, the upper panel shows the difference in 
edge density between higher- and lower-performance image sets consistent with light from above (25%–75% threshold conditions), and the lower panel shows the 
difference in edge density between higher- and lower-performance image sets consistent with light from below (75%–25% threshold conditions). These plots illustrate 
that in both lighting conditions, better performance is associated with edges occurring at the level of the eyes, nostrils, and lips. 
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direction interacts with the morphology of internal face features to 
produce an informative and familiar visual pattern. When an upright 
human face is lit from above, shadows tend to occur below the brows 
and nose, for example, producing a distinct pattern of contrast to that 
which occurs when faces are lit more strongly from below, illustrated in 
Fig. 8. There is evidence that a rudimentary, 2D template of contrast 
differences may play a key role in face detection, from studies of 
newborn looking behaviour (Farroni et al., 2005), illusory face detection 
(Paras & Webster, 2013; Smith, Gosselin, & Schyns, 2012), primate 
electrophysiology (Ohayon et al., 2012) and machine vision (Sinha, 
2002). The current results demonstrate how basic sensory patterns of 
this nature that are useful for face detection are generated (in part) by 
the interaction between face shape and vertical asymmetries in lighting 
that commonly occur in natural environments. 

5.1. The advantage for light from above in face detection 

In real-world environments, light typically arrives from all directions 
at once, but often more strongly from above the horizon (Dror et al., 
2004). There are several reasons why an advantage for detecting faces lit 
from above might arise in visual processing. First, there is evidence that 
the visual system has a default expectation for overhead lighting that 
contributes to our perception of object shape, particularly when the 
illumination conditions are ambiguous (Morgenstern et al., 2011; 
Ramachandran, 1988). In two-tone images, knowing the position of the 
light source may help to disambiguate object shape (Moore & Cavanagh, 
1998) – similarly, an assumption for overhead lighting may aid the re
covery of object shape from images that are consistent with overhead 
lighting, while potentially hindering the recovery of object shape from 
images that are inconsistent with overhead lighting. Consistent with 
this, Brodski et al. (2015) report that faces are more readily detected in 
two-tone images that are consistent with light arriving from above the 
observer, primarily when the face itself is oriented upside-down. Such 
an advantage may be a general feature of object recognition rather than 
face-processing per se, discussed further below in the section General
izability of lighting-dependent performance. 

A second reason why a light-from-above advantage might arise in 
face detection relates to the notion that the visual system employs a 

broadly-tuned template of visual features that are common to different 
faces, matching this template against incoming visual signals to detect 
the presence of a face in our environment. An advantage for light from 
above may reflect that this template is better-tuned to the appearance of 
the (upright) human face that we commonly see under overhead lighting 
(e.g., shadows under the brows; Farroni et al., 2005; Johnson, 2005). 
The results of the present study provide evidence to this effect. In 
particular, across all three experiments, we find that manipulating the 
lighting direction relative to the face produces considerable differences in 
face-detection performance, independent of the lighting direction rela
tive to the observer. We are able to dissociate these by examining the 
effects of spatial inversion of the images – we find that faces lit from the 
direction of the brow are more commonly identified as faces than those 
lit from the direction of the chin, even when these images are presented 
to the observer upside down, meaning that the brow-lit faces are 
consistent with light arriving from below the observer (Fig. 2). Hence, our 
results demonstrate the role of overhead illumination in interacting with 
the unique 3D shape of the upright human face to generate a familiar or 
informative sensory pattern (e.g., the pattern of contrast produced by 
shadows falling under the brows and nose), which is often recognizable 
even when seen in a less typical spatial orientation. In contrast, this 
feature of the results is not well-explained by the notion of prior ex
pectations about lighting direction (relative to the observer) influencing 
the ability to recover object shape. 

Why did the current results differ from those reported by Brodski and 
colleagues? This previous work reports a slight increase in accuracy for 
detecting upright faces in two-tone images consistent with lighting from 
above rather than below, with high performance in both conditions 
(~94% vs. 92% accuracy). The strong differences in performance be
tween lighting conditions observed in the current study, in contrast, 
might have emerged here if our tasks were better able to avoid ceiling 
effects. More difficult to explain is the discrepancy in findings for the 
interaction between spatial inversion and lighting direction. It is worth 
noting, however, some key methodological differences between studies 
that affect the specific visual features under study: (i) using 3D 
rendering, we isolated shading and shadows produced under different 
lighting conditions, such that the two-tone images used in the current 
study did not contain features attributable to surface reflectance (e.g., 

Fig. 10. Image classifier performance as a measure of the information content in two-tone images. (a) Classifier performance for images used in Experiment 1 with 
upright orientation and natural contrast polarity. The grey error bars indicate mean performance and 95% confidence intervals for a null distribution of classifier 
performance. pdiff values relate to the difference between classifier performance when trained and tested on images lit from above versus images lit from below. (b) 
Classifier performance for images used in Experiment 2 with upright orientation and threshold level (from left to right) 12.5%, 25%, 50%, 75%. (c) Classifier 
performance for images used in Experiment 3 with upright orientation. 
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the irises, eyebrows, and lips reflecting light at a different intensity to 
the surrounding skin; Fig. 1), (ii) we cropped the face and non-face 
images such that there was no recognizable external contour provided 
by the ears, hair, and neck, instead focusing on the role of internal 
features in generating the pattern of a face, and (iii) we measured 
sensitivity in discriminating faces from non-face objects under matched 
illumination, such that the non-face images used in the current study 
contained some comparable visual cues to the face images (e.g., the 
broad asymmetry in intensity that occurs across an ellipsoidal object 
under directional lighting, Fig. 4). Hence, it is plausible that participants 
were using different visual features to detect faces in the current study 
compared to the experiment of Brodski and colleagues, which may have 
contributed to the different effects of lighting direction observed. In 
particular, the current results suggest that when considering the pattern 
of contrast produced by shading and shadowing across the internal 
features of the face, the lighting direction relative to the face is more 
significant in generating a recognizable sensory pattern than the lighting 
direction relative to the observer. 

What are the visual features that drive face detection in two-tone 
images? As noted in the previous paragraph, our stimulus design al
lows us to attribute face detection performance in the current experi
ments to the broad patterns of contrast produced by shading and 
shadows that occur across the internal features of the face under 
directional lighting. The particular contrast patterns associated with 
different lighting conditions are illustrated in Figs. 8 and 9a – these 
highlight that dark patches tend to occur under the brows, nose, and lips 
in image sets associated with better performance. Moreover, we found 
that an increase in performance for faces lit from below the chin, when 
the two-tone images were thresholded at a high intensity level, was 
associated with a comparable pattern of edges to that which appeared to 
facilitate performance in faces lit from above the brow (in particular, 
edges occurring at the level of the eyes, nostrils, and lips; Fig. 9b). In 
ecological conditions, there are additional cues likely to contribute to 
face detection that were not available in our two-tone images, including, 
for example, patterns of contrast produced by the non-uniform reflec
tance of the facial surface (e.g., the characteristic appearance of the eyes 
produced by the dark iris and lighter sclera) and the external contours of 
the human head. Hence, the contrast patterns that we use as stimuli in 
the current study are not fully representative of those that occur across 
faces in ecological viewing conditions – instead, the present results 
isolate a contribution of shading and shadow patterns to the appearance 
of the face that appears familiar-enough to observers to enable face 
detection, at least when consistent with light arriving more strongly 
from above the brow. 

Another factor that may contribute to differences in face detection 
and object recognition across lighting environments is the amount of 
low-level information available in the image (e.g., the quantity of edges 
generated across the surface of the object under different lighting con
ditions). We quantified low-level information in our two-tone images in 
terms of how well an image classifier could learn to distinguish faces 
from non-face objects. Interestingly, this analysis indicated that the 
amount of useful information for making this discrimination varies 
depending on the vertical lighting direction, speaking to how a (verti
cally) asymmetric object like the human face can generate either more- 
or less-consistent sensory patterns under different lighting. Classifier 
performance partly aligned, in a qualitative manner, with human per
formance. A notable exception was for images rendered in complex 
lighting environments; here, humans were better at detecting faces 
under naturalistic lighting despite the classifier finding more diagnostic 
information in images produced in an inverted lighting environment. 
This suggests that the human advantage for naturalistic lighting is not 
explained by the amount of low-level information available in the im
ages alone, but might also reflect familiarity with the patterns of shading 
typically encountered on faces. 

5.2. Dependence on intensity-threshold level 

We generally found that patterns of contrast produced when light 
arrives from above the brow facilitated face detection. The one excep
tion was for two-tone images that were produced by thresholding faces 
at a high intensity level (the 75% threshold condition in Experiment 2), 
which isolates the pattern formed by the brightest regions of the original 
image. In this condition, human observers performed better in detecting 
faces in two-tone images that were consistent with lighting from below 
the chin rather than lighting from above the brow, both when the images 
were presented upright and upside down. Images that are thresholded at 
a high intensity level tend to capture parts of the face angled most 
directly towards the light source – this is due to the nature of shading, 
whereby the intensity of light reflected towards an observer from a given 
point of an object’s surface depends on the orientation of the surface 
normal relative to the angle of incident light. This can be seen in Fig. 6A 
– the brightest regions of the image are distributed differently across the 
face when lit from above versus below, and potentially capture more 
relevant detail in the latter. One factor here is the spatial asymmetry of 
faces: finer details occur towards the bottom of the face (mouth, nostrils) 
compared to the top of the face (forehead), which impacts on the image 
features captured by the highest-intensity regions of the image when the 
face is lit from above versus below. Interestingly, there was a notable 
similarity between the image features that appeared to provide an 
advantage in face detection in the light-from-above and light-from- 
below conditions – in both lighting conditions, better behavioural per
formance across threshold levels was associated with edges occurring at 
the level of the eyes, nostrils, and lips (Fig. 9b). This is consistent with 
there being a simple pattern of visual features supporting face detection, 
one that commonly occurs in the broad contrast pattern produced by 
shading and shadows when an upright face is lit from above (Experiment 
1–3) but which can also be produced from faces lit from below under 
certain conditions (Experiment 2, 75% threshold condition). Overall, 
the contrast patterns produced by overhead lighting appear to facilitate 
face detection, but the interaction between form and lighting can pro
vide circumstances where light arriving from below gives more face 
information. 

5.3. Generalizability of lighting-dependent performance 

Are the current results specific to faces or do they reflect a more 
general characteristic of object recognition? A general advantage for 
recognizing objects in visual patterns that are consistent with light from 
above may occur if the visual system has a default expectation for light 
from above that is employed when attempting to infer the shape of an 
object from the retinal image (discussed, for instance, in Morgenstern 
et al., 2011). This could be implemented prior to object categorization 
and face detection. However, as discussed above, the interaction be
tween lighting direction and spatial inversion of the face that we observe 
suggests that the advantage for light from above in our data (when 
viewing upright faces) is related primarily to the particular visual 
pattern produced when a face is lit from the direction of the brow, rather 
than a general advantage for shape recognition that occurs when the 
image is consistent with light from above the observer. Nevertheless, if 
the task were instead to detect a different category of object, it may still 
be reasonable to predict better performance for images consistent with 
light from above, if those are the lighting conditions that we commonly 
see the object type under in the real world. However, this may depend on 
whether we tend to see that object type with a specific orientation 
relative to the sun/sky (like faces and cars) and whether the object has 
sufficient asymmetry in its 3D structure to produce a notably different 
pattern of shadows and shading when lit from different angles. On the 
latter point, the features of the human face are asymmetrical along the 
vertical dimension, and this is partly why quite different patterns of 
shadows result from faces lit from above versus below – for example, 
deeper shadows are produced around the eyes when the face is lit from 
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above because the brows tend to protrude over the eyes to a greater 
extent than the lower orbital area protrudes underneath the eyes. So, 
whether a given object type is better-recognized by the pattern of 
shadows that occurs specifically when it is lit from above will likely 
depend on the particular 3D shape of the object. Our results are evidence 
that the particular shape of the upright human face leads to differences 
in the basic contrast pattern produced when lit from above versus below 
that are significant enough to impact strongly on human performance in 
recognizing that pattern as a face. 

This dependence of shading and shadowing on the specific 3D 
structure of the object also means that there are likely to be cross-species 
differences in how lighting direction contributes to the appearance of 
the face. Much research on the neural basis of face processing has been 
performed in non-human primates, such as macaque monkeys, including 
that which examines the tuning of cells in face-selective regions of the 
visual cortex to coarse contrast features (e.g., Ohayon et al., 2012). The 
tuning of such cells may derive in part from the pattern of shadows and 
shading that tend to occur across the face under naturalistic lighting (e. 
g., shadows below the brows when an upright face is lit more strongly 
from above). Non-human primates share many qualitative features of 
face morphology with humans, often including a brow that protrudes 
above the eyes, but also exhibit notable differences, such as a flatter nose 
and rounded muzzle. Hence, the pattern of shading and shadows pro
duced across the facial surface when lit from above may be comparable 
to humans in some respects but not others, and this may be one factor 
that contributes to both similarities and potential differences in the vi
sual features that drive face detection across species. This relates to a 
broader question regarding how the mechanics of face processing differ 
across primate species, discussed in the context of face recognition in 
Rossion and Taubert (2019). 

In the experiments reported in the current paper, we assessed the 
tendency for participants to perceive an image as containing a face or 
not, while varying the lighting conditions used to generate the image. 
While the stimuli were presented very briefly, participants were not 
restricted in the time they had to respond following stimulus presenta
tion, nor did we analyze response times or speed-accuracy tradeoffs. In 
principle, the speed of face detection may also differ across lighting 
conditions – for example, faster response times might occur for more 
familiar face-like patterns compared to less familiar patterns that are 
still identifiable as a face (e.g., Brodski et al., 2015). Previous work has 
also assessed aspects of face detection by measuring saccadic reaction 
times to peripheral targets and detection-times for targets presented 
under interocular suppression (e.g., Stein et al., 2011; Tomalski et al., 
2009). 

5.4. Conclusion 

Our experience of the social world is built upon specialized sensory 
pathways that extract information about other people’s appearance and 
behaviour (Pitcher & Ungerleider, 2021). To engage our ‘social brain’ 
we must detect people around us, requiring neural mechanisms for 
discriminating faces from other visual patterns, which appear to partly 
exploit coarse intensity differences that commonly occur across the 
human face (Tsao & Livingstone, 2008). Tuning to the essential features 
of a face might be built from simpler orientation- and polarity-sensitive 
filters in early- and mid-level visual cortex (e.g., V1 and V4; ’t Hart et al., 
2011; Ohayon et al., 2012) and/or a subcortical pathway (Johnson, 
2005). Here we find that face detection in broad patterns of contrast 
depends strongly on the vertical lighting direction relative to the face, 
specifically in how this produces a recognizable pattern of shading and 
shadows. These results speak to the importance of shading and shadows 
in generating the sensory cues that drive face detection, and the adap
tation of face detection mechanisms to the statistics of real-world 
illumination. 
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